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Mice and cages experimental design

Nicolas Wicker
University of Lille 1, France

An experimental design is studied where mice should be placed into cages according to two
different constraint settings. In the first one, mice are placed in contiguous cages with the
constraint of changing cage at each day t, avoiding neighbours of days t− 1 and t + 1 and
meeting in the end all other mice. In the second setting, an additional constraint compels mice
to change side at each step so that one half of the mice meets only the other half. A method is
presented for the first setting and two for the second one, one of the latter taking advantage of
finite fields in a simple and very similar way to what happens when dealing with mutually
orthogonal latin squares.
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1. Introduction

In neuropsychology, studying depression is an
important challenging trend. Of course, to
study this kind of behaviour, animal models
are usually considered with a lot of precaution.
Thus experimental design is particularly impor-
tant and some propositions have arised lately
(Golden et al., 2011). Here, we propose three
methods to produce experimental designs that
can be useful for biomedical studies in the case
where mice have to be placed in cages with
particular constraints. The experimental dispo-
sition of cages is represented in Figure 1. Mice
can see each other if they are adjacent or in the
same cage, for example mouse 2 and mouse
3 can see each other. Henceforth, they will be
called neighbours.
In section 2, we present a method to place mice
in cages with a given set of constraints imply-
ing for instance that each mouse must meet
each other mouse, must change cage at each

step and avoid mice from neighbour cages. In
section 3, the constraints are stronger, there are
two parts in each cage and mice must swap
side at each step. Then, the problem does not
allow anymore all mice to meet one another.
In both cases, trying to generalize the results
leads to open problems.

Figure 1: Three cages placement if the number
of mice is n = 6 with representation of left and
right sides. The small opening in the middle of
each cage indicates the place where both mice
of a cage can meet.

2. No systematic swap setting

Given 2n mice and n cages we want to make
mice meet in the following way. Each mouse
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9 1 6 5 7 4 8 3 0 2
8 5 9 2 1 3 0 4 6 7
2 4 8 7 0 6 1 5 9 3
7 1 3 5 4 9 2 6 8 0
9 5 1 0 2 8 3 7 4 6
3 0 9 6 5 7 4 8 1 2
6 8 3 2 4 1 5 0 9 7
2 5 7 0 8 9 6 1 3 4
9 0 5 4 6 3 7 2 8 1

Figure 2: Illustration of edge-coloring and example of a solution for n = 5. Each column represents
a different cage and each row a different experimental day.

encounters each other mouse once and only
once. Cages are disposed in a linear way and
contain each two parts; a left and a right side.
There is a neighbourhood constraint standing
as follows, if at day t two mice share the same
cage, they cannot be neighbours at days t− 1
and t + 1. Besides, we consider a refractory
period r equal to 1, meaning that a mouse can
return in a cage only after a refractory period
equal to 1. The case r > 1 will not be con-
sidered so that it is an open problem to solve
the experimental design with this additionnal
constraint.
We will need in the following P. Hall’s mar-
riage theorem (Van Lint and Wilson, 2001) that
is recalled here:

Theorem 1. Given a bipartite graph G(V, E) with
V = X ∪ Y, a necessary and sufficient condition
for there to be a complete matching from X to Y in
G is that |Γ(A)| ≥ |A| for every A ⊂ X where
Γ(A) stands for the neighbours of A.

The meaning of vertices changes according to
the case at hand, but whenever it is used, the
idea it to establish if there is a complete match-
ing between two sets of points X and Y among
which some pairs (x, y), with x ∈ X and y ∈ Y,
can match and others cannot. When a match is
possible, then an edge exists between the two
points of the pair.
The solution is given by the following proce-
dure. First, we need a succession of complete
matchings between mice so that mice meet

once and only once. This is possible as 2n
is even, indeed in that case what is needed is
an edge coloring of the complete graph K2n
(see Figure 2) (Soifer, 2008) or put it differently
a symmetric latin square. In a second step, for
each day the pairs of the complete matching
are assigned to the columns according to the
given constraints. This can be done thanks to
lemma 2 if n > 2 and is illustrated again with
the same example from Figure 2 on Figure 3,
where pairs of mice are connected to possible
columns (letting aside at this step the neigh-
bourhood constraints) for days 1 and 2. As last
step, mice can be permuted inside columns to
satisfy the neighbourhood constraint thanks to
lemma 3

Lemma 2. For each day t ∈ 2n− 1, it is possible
to associate mice pairs to columns 1, . . . , n satis-
fying the refractory period constraint for r = 1 if
n > 2.

Proof. A way to prove it is to follow the proof
of theorem 17.1 of Van Lint and Wilson (2001)
stating that a t× n latin rectangle can always
be completed into a n× n latin square. First,
we define Bj as the set of pairs that can be cho-
sen for column j. Each pair can occur in n− 2
sets Bj as each pair contains two mice, both of
which have visited a different column at day
t. Besides, at day t column j has contained 2
different mice so that Bj contains n− 2 pairs
as each of these mice has been associated to a
new mouse. Then, if we take l sets Bi1, . . . , Bil ,
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Figure 3: Bipartite graphs for days 1 and 2 using the example of Figure 2.

they contain l(n − 2) pairs and, as each pair
belongs to only n− 2 columns, then there must
be at least l different pairs in the l sets. Con-
sequently, Hall’s theorem 1 can be applied, so
that each Bi is connected to a different mice
pair, meaning that there is a complete matching
between the pairs and the columns verifying
the problem constraints.

As, lemma 2 can lead to neighbourhood con-
straint violations, we present lemma 3 to show
a way to correct these violations.

Lemma 3. It is always possible to adjust a row t
so that matchings in row t + 1 satisfy the neigh-
bourhood constraint if the edge coloring procedure
described in Figure 2 has been used and if n > 2.

Proof. At this point, some notations are needed
to distinguish the different column types at a
given step. They will be denoted C0, C1 and
C2. They are represented on Figure 4

Figure 4: Conflict types C1 and C2 are repre-
sented with two examples for C1.

Columns C0 have no conflict at all. C1 indicates
that there is for each mouse in the column only
one conflict with its neighbour column. For
example in the table below, column 8− 9 in
row t is of type C1 as 8 is with 7 in row t− 1.
In the last case, C2, there is a double conflict of
another kind, a mouse is in conflict with both

mice of the neighbour column. This is the case
for 7 which must avoid as well 8 and 9.

t− 1 9 4 7 8 2 0 1 3 6 5
t 0 1 2 3 4 5 6 7 8 9
t + 1 7 9 0 4 6 8 1 2 3 5

With these notations, row t can be described by
C2C2C1C2C1. Then, conflicts are suppressed
through the following two steps. First, all
columns of type C2 are swapped, which means
that inside each column of type C2 the left hand
side and the right hand side are exchanged. In
the second step, going from one side (let’s say
the left side), to the other side, each column
having a conflict with the preceding one is
swapped. With the given example, this leads
to a new row t given by :

t 1 0 3 2 4 5 7 6 9 8

That way no conflict exists anymore. This is
true as existing conflicts are suppressed and
no new is created. To show the latter, two
cases need to be considered. Firstly, when a
column of type C2 is swapped, it is changed
into a C0 column. Secondly, in the second step
remaining conflicts are resolved.
Let us consider first a column of type C2. With-
out loss of generality let us suppose that such
a column contains mice S1S2 followed by mice
S3S4 with a double conflict between S2 and S3
and between S2 and S4. Then, when S1 and S2
are swapped, S2 cannot be in conflict with its
preceding mouse as in that case S2 would have
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three conflicts which is impossible. Besides, S1
cannot be in conflict with S3. Indeed, if there
would be a conflict between them, then S3S4
would have been of type C2 and for this reason
also swapped. So, the last thing to be checked
is that no new conflict arises between S4 and
S1 if both their columns are swapped. Such
a conflict would involve that in row t− 1, we
would have had either pairs S1S4, S2S3 or pairs
S1S3, S2S4. By the edge coloring procedure, it
is clear that four mice cannot meet one another
in closed group at two consecutive steps if 2n
is larger than 4.
At last, now consider columns of type C1. Each
day such a column is swapped, the conflict
with the preceding column is suppressed as by
definition such a column has a single conflict
with the preceding column. Besides, it cannot
create a double conflict of type C2 with the
following column as this would mean that the
left mouse would have three conflicts which is
impossible. Consequently, the two-steps proce-
dure solves all conflicts.

Algorithm 1 Guide to the practitioner in the
no systematic swapping setting.

Day 1 : define the set of mice pairs as C1 ←
{(2n− 1, 1), (0, 2)}⋃ ⋃

i∈2,...,n−1
(2n− i, i + 1)

for Day t = 2 to 2n− 1 do
Ct ← ∅
for all (i, j) ∈ Ct−1 do

if i = 2n− 1 then
Ct ← Ct ∪ (i, j + 1)

else
Ct ← Ct ∪ ((i + 1) mod (2n− 1), (j +
1) mod (2n− 1))

end if
end for

end for
for t = 1 to 2n− 1 do

apply augmenting path algorithm to as-
sign each pair in Ct to a column among
columns 1 to n

end for
use lemma 3 to remove neighbourhood con-
flicts.

In algorithm 1 the practical steps to follow are
given and to make the article self-contained,
the augmenting path algorithm (Cormen et al.,
1990) to recover a complete matching is recalled
in algorithm 2 for the general case of a bipartite
graph G(V, E) with V = X∪Y. The final result
is provided for n = 5 on Figure 2.

Algorithm 2 Finding a complete matching.
initialize M← ∅
repeat

take a vertex v ∈ X \M
reach a vertex w ∈ Y \M taking alterna-
tively edges in E \M and edges in M, this
leads to a path P
M← P⊕M (symmetric difference)

until M is complete

3. Systematic swap setting

In the present setting, we keep the previous
constraints and in addition mice must change
side at each day. So that, mice can only meet
half of the total population which is divided
into two equal parts. There are n mice of type
L, n mice of type R and n cages. They are so-
called because L mice are initially on the left
side of their cage and R mice on the right side.
At each day, mice of type L encounter mice
of type R and finally all mice of type L have
encountered all mice of type R.
We consider first the simplest case where n is
a prime number. This eases much the problem
as calculations can be conducted in the Galois
field Fn.

Lemma 4. If n is prime, columns are chosen for
mice x0, . . . , xn−1 of type L and mice y0, . . . , yn−1
of type R according to respectively formula i + (t−
1)k and i + (t− 1)l with k 6= l and k− l 6= ±1
then prescribed constraints are respected.

Proof. If n is a prime number, column choice
can be obtained by the formula: i + (t− 1)k for
row t. This means that initially, at day 1, i is the
column of mouse xi. Similarly, i + (t− 1)l indi-
cates the position of mouse yi of type R. We no-
tice that i + (t− 1)k = j + (t− 1)l has a unique
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solution, given by t = 1 + (i − j)(l − k)−1

which is possible as we are working in Fn.
Thus, each mouse L meets each mouse R
once and only once. Besides, it is also ob-
vious that each column is visited only once
as: i + (t − 1)k = c has a unique solution
t = (c− i)k−1 + 1. Finally, the last constraint
to be verified is that two neighbours at day
t cannot be in the same column at day t − 1
or at day t + 1. This means that if we have
i+(t− 1)k = j+(t− 1)l then i+ tk 6= j+ tl± 1
which implies that k− l 6= ±1. Besides, as obi-
ously k 6= l we can conclude.

Algorithm 3 gives the steps to follow to design
the systematic swap-setting experiment if n is
prime.

Algorithm 3 Guide to the practitioner in the
systematic swapping setting when n is prime.

Take k and l verifying k 6= l and k− l 6= ±1
for Day t = 1 to n do

mouse i of type L goes in cage (i + (t−
1)k) mod n on the left side if i = 1
mod n, on the right side otherwise
mouse i of type R goes in cage (i + (t−
1)l) mod n on the right side if i = 1
mod n, on the left side otherwise

end for

An example of this experimental design
is given for n = 5 in Table 1 taking
(x0, x1, . . . , x4) = (0, 1, . . . , 4), (y0, y1, . . . , y4) =
(5, 6, . . . , 9) and (k, l) = (1, 3).

Table 1: Example of a solution for n = 5 in the
second setting using the primality of 5. Again,
each column represents a different cage and
each row a different experimental day.

0 5 1 6 2 7 3 8 4 9
7 4 8 0 9 1 5 2 6 3
3 9 4 5 0 6 1 7 2 8
6 2 7 3 8 4 9 0 5 1
1 8 2 9 3 5 4 6 0 7

In the general case, we proceed in a similar
fashion to the method followed in the first set-
ting. That is: first mice are matched and then
pairs of mice are assigned to columns.

Lemma 5. In the general case where n is not prime,
a sufficient condition for the problem to be solved is
that n > 11.

Proof. At day t = 1, no difficulty is encoun-
tered. At subsequent days t + 1, letting aside
the constraint on neighbours, a mouse of type
L can meet any mouse of type R except mice
already met, that makes n− t possibilities. Us-
ing Hall’s marriage theorem, as in the proof of
lemma 2, this can be satisfied. Afterwards, the
pair can be affected to n− 2 columns. This is
again made possible by Hall’s theorem.
If now the neighbourhood constraint is consid-
ered, a difficulty arises. Indeed, a mouse can
happen to be the neighbour at day t of a mouse
it meets either at day t− 1 or at day t + 1. For-
tunately, this problem can be tackled. First, let
us call conflictual two mice that are neighbours
at step t and which should meet at day t− 1 or
t+ 1. Conflicts are then resolved iteratively. Let
us consider the following situation occuring at
day t:

P1 P P2 Q1 Q Q2
0 1 2 3

Here, we suppose without loss of generality
that the conflict is between 1 and 2 and look
for a pair Q that could be exchanged with P
so as to reduce the number of conflicts. A per-
mutation is only possible if the four following
conditions are met, P1 and P2 should not be
in conflict with Q and Q1 and Q2 not in con-
flict with P. P can be in conflict with three
other columns besides P2 and two columns
are not possible because of the refractory pe-
riod, so n− 6 columns are left as P 6= Q. Be-
sides, Q cannot be in conflict with P1 and P2
so 3 columns can still be discarded and on top
of that 2 owing to the refractory period. Fi-
nally, only n− 11 columns are left. Therefore,
if n > 11 it is possible iteratively to suppress
all conflicts.
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Table 2: Example of a solution for n = 12 in the second setting.

11 13 10 14 9 15 8 16 7 17 6 18 5 19 4 20 3 21 2 22 1 23 0 12

20 5 13 0 23 2 15 10 22 3 17 8 14 11 19 6 16 9 12 1 18 7 21 4

7 19 2 12 4 22 8 18 11 15 5 21 9 17 3 23 6 20 0 14 10 16 1 13

14 1 17 10 12 3 16 11 22 5 18 9 20 7 13 2 19 8 23 4 21 6 15 0

6 22 8 20 0 16 9 19 7 21 3 13 10 18 5 23 11 17 1 15 4 12 2 14

15 2 17 0 22 7 18 11 14 3 21 8 12 5 20 9 23 6 13 4 19 10 16 1

1 17 4 14 6 12 9 21 11 19 7 23 10 20 5 13 8 22 2 16 0 18 3 15

23 8 21 10 16 3 20 11 22 9 14 5 12 7 18 1 13 6 15 4 17 2 19 0

4 16 1 19 9 23 7 13 0 20 8 12 10 22 5 15 11 21 2 18 6 14 3 17

20 1 16 5 18 3 15 6 22 11 14 7 12 9 19 2 23 10 17 4 13 8 21 0

8 14 10 12 6 16 11 23 4 18 1 21 7 15 5 17 9 13 2 20 0 22 3 19

13 10 14 9 12 11 19 4 15 8 17 6 21 2 16 7 23 0 18 5 20 3 22 1

Algorithm 4 deals with the case where n is
not prime. Basically, it is close to algorithm 1
making repeated use of algorithm 2.

Algorithm 4 Guide to the practitioner in the
systematic swapping setting when n is not
prime.

Day 1 : mice L are paired randomly with
mice R
for Day t = 2 to n do

create a graph where edges are between
mice L and R which have not met each
other yet
realize the bipartite matching using algo-
rithm 2

end for
for t = 1 to n do

create a graph where edges are between
mice pairs at day t and allowed columns
realize the bipartite matching using algo-
rithm 2

end for
use lemma 5 to remove neighbourhood con-
flicts.

This method has been applied for n = 12 on
Table 2.

4. Conclusion

Even if the proposed solutions are already use-
ful for biologists, some extensions are needed.
Indeed in both settings, the refractory period
r after which a mouse can return to the same
cage has only been considered to be equal to
1. This should be generalized to prevent mice
from going too often in the same cage and we
presume that both problems can be solved sys-
tematically for higher values of r. Another ex-
tension of this work, would be to prevent mice
from seeing each other twice consecutively.
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