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We propose a Bayesian statistical approach to deriving a simple logistic hourly diffuse fraction model. The model is 
calibrated with data that include northern as well as southern hemisphere sites. An independent dataset comprising 
seven worldwide locations is used to compare the model against several previous models such as Skartveit et al. (1998), 
Reindl et al. (1990), Erbs et al. (1982), and a version of the logistic model derived by Boland et al. (2008). On an 
overall basis, the new model performs better than the models of Erbs or Reindl, and exhibits similar performance to the 
Skartveit model but with a much simpler expression. In addition, the use of a Bayesian criterion for model selection 
confirms that the new proposed model achieves the best trade-off between goodness-of-fit and model complexity. Finally, 
it is shown that the use of Bayesian methods instead of classical statistical techniques lead to a less-biased model. Our 
presentation is accessible to readers with an intermediate level of statistics. 
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1. Introduction 
 
Knowledge of solar radiation (both direct and diffuse) is 
essential for the proper modelling of solar energy oriented 
applications. More precisely, the evaluation of the 
performance of a solar collector such as a solar hot water 
heater or photovoltaic cell requires knowledge of the 
amount of solar radiation incident upon it. Solar 
radiation measurements are usually for global radiation 
on a horizontal surface. These global values comprise two 
components : the direct and the diffuse. The diffuse 

component takes into account the additional irradiance 
reflected from the clouds and the clear sky. However, it 
must pointed out that the diffuse part is not generally 
measured. Consequently, a method must be derived to 
estimate the diffuse radiation on a horizontal surface from 
the global radiation upon that surface. Numerous 
researchers have studied this problem and have been 
successful to varying degrees (Boland et al. 2001). Indeed, 
many models have been developed for determining the 
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fraction of the global which is direct or diffuse (Wong 
and Chow 2001). One class of these models called 
decomposition models is based on correlations between 
the dimensionless hourly clearness index  and 
the hourly diffuse dimensionless fraction

0/t Gk I I=

d dk I / ,GI=   
where , ,G dI I and 0I are the global, diffuse and 
extraterrestrial radiation integrated over the hour in 
question (Orgill and Hollands 1977; Erbs et al. 1982 ; 
Spencer 1982; Reindl et al. 1990). For example, Reindl 
et al. (1990) initially proposed a first model that consists 
of 3 equations (each correlation for a specific bin of 
clearness index) that relate  to . In a similar way, 
Erbs et al. (1982) developed polynomials up to order 4 to 
derive the diffuse fraction from the clearness index. In 
order to improve the models, additional geometrical and 
meteorological input variables have been proposed 
(Reindl et al. 1990; Skartveit et al. 1998). For instance, 
Reindl et al. (1990) have derived a second model that 
consists of piecewise linear correlations that compute the 
hourly diffuse fraction as a function of the hourly 
clearness index and solar elevation. A third model has 
been also designed when measurements of temperature 
and relative humidity are available. However, it may be 
worth noticing that measurements such as temperature or 
relative humidity are not always readily available in solar 
radiation series. As a consequence, some authors like 
Skartveit et al. (1998), Perez et al. (1992), Gonzales and 
Calbo (1999) proposed models that make use of 
information that is solely extracted from hourly global 
irradiance series. For instance, Skartveit et al. (1998) 
introduced, in addition to the clearness index and the 
solar altitude, a third variable called the hourly variability 
index

dk tk

1  3( ),σ which is defined as the root mean squared 
deviation between the clear sky index of the hour in 
question and, respectively, the preceding hour and the 
succeeding hour. This additional predictor is intended to 
account for the effect of variable/inhomogeneous clouds. 
In their survey, the authors have compared extensively 
their model against models such as Erbs et al. (1982), 
Maxwell (1987) and Perez et al. (1992). While the 
Skartveit model exhibits very good performance, it is 
quite complicated as the model is phrased with a set of 
analytical expressions designed to assign the diffuse 
fraction into four bins of clearness index and to take into 
account the case of invariable hours 3( 0),σ ≈  and 
variable hours 3( 0).σ >  
 
Further, it must be outlined that most of the above cited 
models have been tuned or calibrated with data from 
Europe or North America and consequently may prove to 

                                                           
1 Perez et al. (1992) also introduced such a variability index in a 
similar manner. 

be inadequate for southern hemisphere sites like 
Australia. However, some attempts have been made to 
build diffuse fraction models from southern sites data. As 
an illustration, Spencer (1982) developed a model suited 
for Australian locations in the latitude range 20-45° S. 
Boland et al. (2001) developed a validated model for 
Australian conditions using a logistic function of the form 

0 1

1
1 exp( )d

t
k

kα α
=

+ +
instead of piecewise linear or nonlinear 

correlations. More recently, Boland et al. (2008) used 
sound statistical techniques to justify the use of the 
logistic function. While the model has been constructed 
with data from various locations including northern as 
well as southern hemisphere sites, the authors concluded 
their work by the need for developing a new logistic 
model that takes into account (in addition to the 
clearness index) other predictors to enhance the fit. 
 
Finally, it must also stressed that, to the best of our 
knowledge, the construction of all above models was 
made by using the classical least-squares technique. In 
this work, we propose to approach the problem from a 
different perspective by using Bayesian methods in order 
to derive a new logistic model. Indeed, Bayesian 
probability theory is currently experiencing an increase in 
popularity in the sciences as a means of probabilistic 
inference (Malakoff, 2005). Bayesian inference has 
already been applied successfully to complex models in 
the fields of physics, astronomy, medical statistics, 
financial modelling and genetics (Congdon, 2001). In the 
realm of solar energy-oriented applications, Lauret et al. 
(2006a) proposed a Bayesian approach to estimating 
convective heat transfer coefficients of a roof-mounted 
radiant barrier and also designed a neural network based-
model in order to estimate the direct solar irradiance 
(Lauret et al., 2006b). 
 
The goals of this paper can be stated as follows: 
 
i) to propose a new logistic diffuse fraction model that 

is constructed from information readily available in 
global irradiance series, 

ii) to investigate the use of a rather new (in the realm of 
solar radiation modelling) statistical method to 
design the model (Bayesian parameter estimation), 

iii) to use a Bayesian criterion in order to quantitatively 
select a diffuse fraction model (i.e. Bayesian model 
selection)  

 
The remainder of this paper is organised as follows. 
Section 2 discusses the datasets and the procedure used 
to calibrate the models and to assess the models’ 
performance. Section 3 describes the proposed model. 
Section 4 introduces Bayesian techniques regarding the 
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two levels of inference: parameter estimation and model 
selection. Section 5.1 presents the results of the Bayesian 
parameter estimation while section 5.2 contains a 
detailed evaluation of the proposed diffuse fraction model. 
Section 5.3 deals with the Bayesian model selection. 
Finally, Section 6 gives some concluding remarks. 
 
2. Datasets and Procedure 
 
In an attempt to construct a generic model that could be 
applied to any location, we used hourly data from nine 
worldwide locations listed in Tables 1 and 2. The 
proposed dataset is supposed to cover a variety of 
climates and environments in Europe, Africa, Australia 
and Asia. Detailed information about the collected data 
for most of the locations can be found in Boland et al. 
(2008).  
 
Note that our goal is not to build correlations that take 
into account seasonal dependency but instead yearly 
diffuse fraction correlations. Consequently, whenever 
possible, complete years of data were used to ensure that 
all seasons were treated equally well. It should also be 
noted that the calculation of the clearness index includes 
an element of deseasoning. 
 
We divided the data into two subsets: the calibration or 
training set and the test set. Our model will be fitted 
using the calibration set (see Table 1) but for comparison 
purposes with the other existing models, a second dataset 
called test or validation set (see Table 2) will be used. 
Because this test set is not used in the construction of the 
model, it will provide an unbiased estimate of the 
performance of the models. To obtain the training 
dataset, a detailed study of the distribution of the diffuse 
fraction values for the different sites led us to consider 3 
sites for the southern hemisphere and two stations for the 
northern hemisphere. This choice gave the best coverage 
of the diffuse fraction values. In other words, the training 
dataset (11074 data points) was constructed so as the 
dataset encompasses the whole spectrum of diffuse 
fraction values.  
 
3. Proposed Model 
 
As mentioned in the introduction, a logistic model of the 
form given by Eq. (1) was proposed by Boland et al. 
(2008) as to estimate the diffuse fraction: 
 

kd =
1

1+ exp α0 +α1kt( )  
(1) 

 
By amalgamating data from seven locations (northern 
and southern hemisphere sites) and by using classical  

Table 1. Training dataset: data used to calibrate or tune 
the models 

Site Location Year #data 
Adelaide 
(Australia) 

34° 56' S, 138° 36' E,  
48m a.s.l 

2003 2,434 

Darwin 
(Australia) 

12° 28' S, 130° 51' E,  
30m a.s.l 

2001, 
2002 

1,418 

So
ut

he
rn

  
sit

es
 

Reunion 
(Reunion Is.) 

20° 52' S, 55° 28' E,  
25m a.s.l 

2002 2,125 

Camborne 
(UK) 

50° 13' N, 5° 19' W, 
88m a.s.l 

2001 1,460 

N
or

th
er

n 
 

sit
es

 

Lisbon 
(Portugal) 

38° 42' N,  9° 05' W, 
56m a.s.l 

1980 3,637 

 
Table 2. Test dataset: data used to test the models 
(Validation dataset)  

Site Location Year #data 
Adelaide 
(Australia) 

34° 56' S, 138° 36' E,  
48m a.s.l 

2004 2,307 

Darwin 
(Australia) 

12° 28' S, 130° 51' E,  
30m a.s.l 

2003, 
2005 

1,179 

Maputo 
(Mozambique) 

25° 58' S , 32° 35' E,  
39 m a.s.l 

1970 3,548 
So

ut
he

rn
  

sit
es

 

Reunion 
(Reunion Is) 

20° 52' S, 55° 28' E,  
25m a.s.l 

2000 2,045 

Bracknell  
(UK) 

51° 25 ' N, 0° 46' W ,  
77m a.s.l 

1972 3,613 

Macau  
(China) 

22° 11' N ,113° 33',  
10m a.s.l 

1985 3,513 

N
or

th
er

n 
 

sit
es

 

Uccle 
(Belgium) 

50°48’ N, 4°21’ E,  
104m a.s.l 

1990 3,639 

 
statistical techniques (Least-squares fit), Boland et al. 
(2008) obtained the following parameter values α0=-5.00 
and α1 = 8.60. 
 
The use of such a logistic function brings a clear 
advantage as only one closed form equation is used to 
model the diffuse fraction. Indeed, in addition to being 
well suited for the S-shaped form of the diffuse fraction-
clearness index relationship, there is no need here to split 
the model into different clearness index bins. 
Furthermore, and contrary to the models of Reindl et al. 
(1990), the values of the modelled diffuse fractions are 
always in the range (0-1). Note also that a formal 
statistical argument was presented to support the form of 
the model (Boland et al. 2008). 
 
In an attempt to enhance the performance of the model, 
we propose in this paper an extension of this previous 
logistic model (denoted herein ‘old’ logistic model) by 
using the following variables: apparent solar time (AST), 
solar elevation α (in degrees), daily clearness index  
and persistence index

TK
.φ This new logistic 
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model, denoted herein the BRL model (for Boland-
Ridley-Lauret model), is given by Eq. (2):  
 

0 1 1 2 3 4

1
1 exp( )d

t
k

k AST KTα α β β α β β φ
=

+ + + + + +
     (2) 

 
The choice of these additional variables was made upon 
the following considerations: AST, unlike the solar 
elevation, is asymmetric about solar noon and may 
explain differences in the atmosphere between morning 
and afternoon (Boland et al., 2001). The daily clearness 
index can also be used as a predictor as the whole day 
may have a common characteristic. As mentioned above, 
some researchers (Skartveit et al. 1998; Gonzales and 
Calbo, 1999) demonstrated the improvement brought by 
adding a variability index into the list of the input 
parameters. Thus, we consider the same type of predictor 
variable as Skartveit et al. (1998) but in a different and 
simpler form. Indeed, we take as an extra predictor both a 
lag (at hour h-1) and a lead (at hour h+1) of the 
clearness index and average them, namely we define 
 

1 1( )t tk kφ − += + / 2  for sunrise < t < sunset,  

1tkφ += for t=sunrise, for t=sunset. 1tkφ −=
(3) 

 
This input variable φ  is deemed to account for the 
persistence of the sky conditions. Boland (2008) showed 
that the hourly deseasoned global radiation follows a first 
order autoregressive process, AR (1), commonly called a 
Markov Chain. Since is a deseasonalized variable, it 
should possess the Markovian property and we have used 
this persistence index to capture this.  

tk

 
We wish to point out that in Ridley et al. (2009), we 
showed that if the extra variables were added separate to 
the logistic formulation, the result was diffuse fraction 
values >1 and <0. Including all variables within the 
logistic function constrains the diffuse fraction values. 
 
Unlike Reindl et al. (1990), we will not consider variables 
such as ambient temperature and relative humidity. 
Indeed, there are many locations for which the humidity 
and ambient temperature would not be recorded, 
particularly when the solar radiation is estimated from 
satellite data. Our goal is to be able to predict the diffuse 
fraction with information solely extracted from the hourly 
global irradiance series.  
 
Regarding the choice of the additional input variables, 
when building a solar radiation model, a term like the 
clearness index is necessarily included, but the inclusion 
of the other terms is open to doubt. This raises the 
question of selection among a range of possible variables 

or equally of possible models. For instance, Reindl et al. 
(1990) used stepwise regression techniques to reduce a 
set of 28 potential predictor variables to only four 
significant ones. For a set of v  potential variables, there 
are  potential models. If we restrict ourselves to the 
four preceding variables or their equivalent correlation 
coefficients 

2v

( ) 1,2,3,i iβ
= 4

, this lead 42 16s to = possible 

choices. But, among the set of possible predictor variables, 
which ones should we choose? To put it in other words, 
which variables (and hence model) should we select?  
 
Before proceeding further, it must be stressed that we 
have applied a Bayesian methodology for variable 
selection suggested by George and McCulloch (1993). 
This work (not presented in this paper) strongly led to 
the selection of the ‘full’ model i.e. the one that contains 
the four potential variables namely (AST), solar elevation 
α , daily clearness index TK  and persistence index φ .  
 
The BRL model will be compared against four previous 
models : the ‘old’ logistic model (Eq. (1)), the model of 
Erbs et al. (1982) , the model of Skartveit et al. (1998) 
and to the second form of the model of Reindl et al. 
(1990) (i.e. the one that includes, in addition to the 
clearness index, the solar elevation). 
 
Finally, it must also be noted that the present work aims 
to complement the work of Ridley et al. (2009) by 
estimating the parameters of the model in a Bayesian 
framework. The next section is devoted to a brief 
introduction of the Bayesian inference while Appendix A 
will give further details about the Bayesian computations. 
 
4. Bayesian Inference 
 
Bayesian probability theory is currently experiencing an 
increase in popularity in the sciences as a means of 
probabilistic inference (Malakoff, 2005). Cox (1946) 
showed that any method of scientific inference that 
satisfies simple rules of logical and consistent reasoning 
must be equivalent to the use of ordinary probability 
theory as originally developed by Bayes (1763) and 
Laplace (1812). Two of these simple rules of probability 
theory are the sum rule and product rule (where prob 
stands either for a probability or a probability density 
function (pdf)):  
 

( | ) ( | ) 1prob x I prob x I+ =         (4) 
( , | ) ( | , ) ( | )prob x y I prob x y I prob y I+ ×       (5) 

 
where x represents the proposition that x  is false, the 
vertical bar “|” means “given” and the comma is read as 
the conjunction “and” . Two useful relationships are 
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derived from these basic rules, namely, Bayes’s theorem 
and the marginalization relationship: 
 

  
prob(x | y, I ) =

prob( y | x, I ) × prob(x | I )
prob( y | I )  

    (6) 

( | ) ( , | )prob x I prob x y I dy= ∫      (7) 
 
where the symbol I denotes the relevant background and 
assumptions. Notice that, for sake of clarity, the relevant 
background I will be omitted in the subsequent formulae 
related to the pdf’s. 
 
In the Bayesian context, a probability represents a degree-
of-belief (or encodes a state of knowledge); that is, how 
likely something is to be true based on all the relevant 
information at hand. In other words, in the Bayesian 
context, a probability evaluates (quantitatively) the 
veracity of a hypothesis and this on the basis of all the 
available information. The name given to this approach 
comes from the key role played by Bayes’s theorem. The 
latter is used to update the probabilities in the light of 
new data. Thus, the Bayesian approach is very close to 
the basics of scientific reasoning. Indeed, from a set of 
initial hypotheses, we carry out observations which 
enable us to deduce (or to infer) other conclusions or to 
update our initial beliefs.  
 
However, this concept seems too vague and too 
subjective to the school of conventional statistics (i.e. a 
frequentist approach) which defined probability as the 
long-run relative frequency with which an event occurred, 
given infinitely many repeated experimental trials. Indeed, 
the concept of degree-of-belief is criticized by the school 
of frequentists as it leads to subjectivity (because my 
belief could be different from yours). Although the 
frequency definition appears to be more objective, it fails 
to tackle most real-life scientific problems. Further, from 
a Bayesian viewpoint, all probabilities are always 
conditional (i.e. based on all the relevant background) 
and as stated by (Jaynes 2003), objectivity requires only 
that two people having the same information should 
assign the same probability. A good review of the 
Bayesian approach is given by (Jaynes 1986) and (Loredo 
1990).  
 
Two levels of inference are involved in the task of data 
modelling. At the first level, we suppose that a particular 
model is true (i.e. the structure of the model is deemed 
correct) and we fit that model to the data i.e. we infer 
what values its free parameters should plausibly take, 
given the data. This step is repeated for each model. The 
second level of inference is the task of model comparison 
or model selection. This step consists in ranking the 

alternative models in the light of the data. Bayesian 
methods are able consistently and quantitatively to solve 
both the inference tasks (MacKay 2003). Let us write 
Bayes’ rule for the two levels described above.  
 
4.1. Bayesian Parameter Estimation 
 
Assume the model has a vector of m 
parameters ( )1 2, ,,... mθ θ θΘ = . Bayesian inference deals 
with the estimation of the values of m model parameters 
about which there may be some prior beliefs. These prior 
beliefs can be expressed as a probability density function 
(pdf) called prior, ( )p Θ and may be interpreted as the 
probability placed on all possible parameter values before 
collecting any new data. The dependence of the n 
observations (or measurements) ( )1 2, ,..., nD d d d=  on the 

p parameters can also be expressed as a pdf: ( )|p D Θ , 
called the likelihood function. The latter is used to 
update the prior beliefs about , to account for the new 
data

Θ
D . This updating is done through Bayes’s theorem: 

 

p Θ | D( )= p D |Θ( )p Θ( )
p D( )  

(8) 

 
where ( )|p DΘ  represents the posterior pdf and expresses 
the values of the parameters after observing the new data. 
In other words, the prior is modified by the likelihood 
function to yield the posterior. A major difference 
between Bayesian and frequentist (or classical) methods 
is that the Bayesian inference offers a framework 
(through the use of prior information) to continuously 
update our posterior beliefs. In other words, all previous 
work is not wasted as the preceding model parameters 
can be used as prior information for the derivation of the 
parameters estimates of the next (new) model.  
 
Bayesian models or more precisely the computation of the 
posterior given by Eq. (8) cannot be done analytically. 
Under some simplifying assumptions (unimodal 
distribution, Gaussian approximation for the posterior 
distribution), the calculation of the posterior distributions 
is readily done by using Laplace’s method (see MacKay 
2003 for details). Unfortunately, most multi-dimensional 
models, like for instance the one under consideration 
here, do not fall into this specific class. Consequently, 
Bayesian analysis usually requires numerical methods for 
calculating the posteriors of interest. Any algorithm that 
generates samples from a distribution function could be 
used. In this survey, we propose to work with Monte 
Carlo methods which do not make any simplifying 
assumptions in the process of Bayesian data analysis. 
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Progress in Bayesian posterior computation is due 
undoubtedly to Markov Chain Monte Carlo (MCMC) 
methods. In this work, the Bayesian analysis is conducted 
by using the statistical software package WinBUGS 
(Winbugs 1989). WinBUGS (for Bayesian Inference 
Using Gibbs Sampling) is an easy-to-learn and easy-to-use 
software that implements the Gibbs sampler (Thomas et 
al. 1992; Geman and Geman 1984) for generating 
samples from a Markov Chain whose equilibrium 
distribution is the posterior distribution. The interested 
reader is referred to Appendix A for a detailed survey of 
Bayesian computations. 
 
4.2. Bayesian model selection 
 
At the second level of inference, the problem consists in 
inferring which model is most plausible given the data. 
The posterior probability of each model is as follows:  
 

  
p Mk | D( )= p D | Mk( )p Mk( )

p(D)  
(9) 

 
The data-dependent term ( )| kp D M  is called the 
evidence or the marginal likelihood for model kM . The 
quantity ( )kp M  represents a prior belief for model kM . If 
we have no particular reason to prefer one model over 
another, then we will assign equal priors to all models. 
Since the denominator does not depend on the model, 
one can see that the different models are ranked 
according to the evidence term ( )| kp D M . Notice that 
the evidence term is obtained from the likelihood 
( )| ,k kM

kΘ
p D Θ  by averaging over the priors of model 

parameter  for model kM ,  
i.e. ( ) ( ) ( )| | , |k k k k k  kp D M p D M p M d= Θ Θ∫ Θ . 

 
There are, however, practical problems associated with 
the computation of the above model probabilities. Indeed, 
a practical difficulty is that marginal likelihoods and the 
corresponding model probabilities are very sensitive to 
the choice of model parameters priors. To circumvent 
this problem, we propose the use of information criteria. 
Different model selection criteria exist. Among them, one 
can cite the Bayesian information criterion (BIC) 
(Schwarz 1978) and the Akaike information criterion 
(AIC) (Akaike 1974).  
 
In the Bayesian framework, a new criterion called the 
Deviance Information Criterion (DIC) (Spiegelhalter et 
al. 2002) can be used. But contrary to the former criteria, 
the DIC is easy to calculate from the samples generated 
by a Markov Chain Monte Carlo simulation and is 
applicable to a wide range of statistical models. Moreover, 

it overcomes the necessity of identifying the numbers of 
parameters in the model which is required for calculation 
of BIC and AIC. Models with smaller DIC are better 
supported by the data. Therefore, DIC will provide a 
means to rank the different diffuse fraction models in the 
light of data.  
 
Note that a DIC module that automatically computes 
this criterion is implemented in the latest version of 
WinBUGS. The interested reader is referred to Appendix 
B for a detailed explanation related to the DIC 
calculation. 
 
5. Results 
 
5.1. Results of the Bayesian Inference (Parameter 
Estimation) 
 
In this section, we focus on the results of the first level of 
the Bayesian inference (i.e parameter estimation) but 
again, let us recall that we have also used a Bayesian 
methodology for variable selection (George and 
McCulloch 1993). Indeed, prior to the estimation of the 
models’ parameters, all 16 potential models were 
evaluated and it was found that the inclusion of all 
predictors was necessary. The MCMC simulation runs 
came to the selection of the ‘full’ model (i.e. the one that 
includes all the predictors). The great number of data 
values led to strong evidence for the full model. If less 
data were available for computing the models’ 
probabilities, the results could be quite different.  
 
As mentioned above, Appendix A details the Bayesian 
computations related to the BRL model. It must be 
stressed, however, that we used a Student’s t-distribution 
for the likelihood distribution (as opposed to a Gaussian 
distribution that is related to the classical Least-squares 
techniques). The Student’s t-distribution has in general 
longer ‘tails’ than a Gaussian. This gives the important 
property of robustness which means that it is less sensitive 
than the Gaussian distribution to the presence of a few 
data points which are outliers. 
 
Regarding the problem of parameter estimation, 30.000 
iterations (for each chain) of the MCMC sampler under 
WinBUGS led to the statistics given in Table 3. Several 
checks were made in order to verify the convergence of 
the algorithm and the (good) exploration of the model’s 
parameter space by the sampler. 
 
The MC error is an estimate of how much of the 
variation in the posterior sample is due to the noise 
generated in the sampler. Its value should be very small 
relative to the standard deviation Sd (as seen in Table 3). 
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The 2.5% and 97.5% percentiles define the 95% 
credibility interval (not to be confused with the 
confidence interval used in the frequentist approach) for 
the parameter of interest i.e. for instance the probability 
that the value of the parameter 0α lies between -5.403 
and -5.244 is 95%, given the observed data and the prior 
belief. 
 
Table 3. Results of the Bayesian inference 

Para-
meter 

Mean SD MC 
error 

2.5% median 97.5% 

α 0  -5.323 0.040 7.78E-4 -5.403 -5.323 -5.244 

α1  7.279 0.074 0.002 7.135 7.280 7.423 

β1  -0.030 0.002 3.78E-5 -0.033 -0.030 -0.026 

β2  -0.005 3.29E-4 7.06E-6 -0.005 -0.005 -0.004 

β3  1.719 0.049 0.001 1.621 1.720 1.812 

β4  1.082 0.067 0.002 0.950 1.082 1.214 

 
The appraisal of the BRL model and comparisons against 
previous models will be made using the following 
equation that summarizes the BRL model: 
 

kd =
1

1+exp −5.32+7.28kt −0.03AST−0.0047α+1.72KT +1.08φ( ) 
(10) 

Note that the sensitivity to the daily clearness index and 
the persistence is particularly significant in the central 
interval (0.25 – 0.75). Thus, the model is quite able to 
deal with the large variety of sky conditions for a similar 
value of clearness index. Conversely, the sensitivity of the 
model output to the AST and to the solar elevation 
appears to be very small (as confirmed by the small values 
of the coefficients related to these 2 input variables). 
Hence, one may ask if it is worth including these two 
variables. In order to verify this point, and to confirm the 
results given by the work related to the Bayesian method 
for variable selection (briefly introduced in section 3), we 
fit a model by omitting these 2 variables. The results (not 
shown in this paper) were not as good as with the full 
model. A more important fact to note is that our model is 
not designed to take into account the usually observed 
increase in the diffuse fraction as . Further, such a 
trend is reinforced in this range of clearness index for 
decreasing or low solar elevations (as seen for instance in 
the model of Skartveit et al., 1998 or Reindl et al., 1990). 
However, the small amount of data in this region of 

(2% of the present test dataset) and our will to build a 
single closed-form equation (instead of a set of 
complicated analytical expressions) led us to disregard 
this particular point. Further, one may notice that, in 
that region, the amount of incident energy is low, since it 
always occurs near sunrise or sunset. Note also that Erbs 
et al. (1982) also chose to disregard this fact arguing that 
these points are not understood well enough to justify 
fitting a curve to them.  

tk

0.8tk >

tk

 
Diffuse fractions predicted by the above model are 
plotted in Figure 1 against clearness index for 
respectively 3 AST values, 3 solar elevations, 4 daily 
clearness index and 4 persistence values.   

5.2. Appraisal of the BRL model  
 

 

The two classical statistical indicators Root Mean 
Squared Error (RMSE) and Mean Bias Error (MBE= 
Modelled -Observed) are used to evaluate the BRL 
logistic model against the preceding models. Tables 4 
and 5 give an overall comparison of the different models 
for the different test sites. The LS column corresponds to 
the model tuned to the training dataset (see Table 1) by 
using the classical least-squares technique (see section 
5.4 and Eq. (11)). The old logistic model is given in Eq. 
(1). Number of hours (N) and observed average diffuse 
fraction (Mean) are also given.  
 
Note that, for the moment, we restrict the comparisons 
to the first five models. A special discussion related to the 
LS model will be given in section 5.5. Regarding the 
diffuse fraction, the RMSE for the BRL model are lowest 
or second lowest (just after the Skartveit model for the 
location of Adelaide and Maputo). The only exception to 
this ranking is related to the Uccle station where the 
Reindl model performs better than the BRL model. On 

Figure 1. Diffuse fraction vs clearness index from the BRL 
diffuse fraction model for 3 AST values, 3 solar elevations, 4 
daily clearness index and 4 persistence values. 
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Table 4. MBE and RMSE of hourly diffuse fraction for all models. 

Location N Mean  BRL Skartveit Reindl Erbs Old LS 
RMSE 0.092 0.091 0.103 0.104 0.099 0.096 Adelaide 2,307 0.376 
MBE -0.011 0.013 0.001 0.003 -0.001 -0.001 
RMSE 0.084 0.096 0.098 0.091 0.094 0.090 Darwin 1,179 0.184 MBE 0.012 0.038 0.057 0.034 0.039 0.033 
RMSE 0.104 0.102 0.111 0.110 0.114 0.110 Maputo 3,548 0.403 MBE 0.004 0.024 0.034 0.008 0.015 0.013 
RMSE 0.131 0.138 0.143 0.149 0.149 0.126 Reunion 2,045 0.430 MBE 0.031 0.055 0.054 0.033 0.034 0.035 
RMSE 0.100 0.111 0.114 0.114 0.111 0.101 Bracknell 3,613 0.793 
MBE -0.023 -0.035 -0.040 -0.035 -0.040 -0.033 
RMSE 0.100 0.102 0.103 0.110 0.111 0.101 Macau 3,513 0.669 MBE 0.016 0.022 0.024 0.003 0.001 0.013 
RMSE 0.106 0.093 0.100 0.113 0.114 0.102 Uccle 3,639 0.699 MBE 0.032 0.015 0.016 0.022 0.019 0.023 
RMSE 0.104 0.105 0.111 0.114 0.114 0.104 All sites 19,844 0.562 MBE 0.008 0.014 0.015 0.005 0.005 0.008 

 
Table 5. MBE and RMSE of hourly diffuse irradiance for all models. 

Location N MEAN  BRL Skartveit Reindl Erbs Old LS 

  W.m-2( ) W.m-2( )  

RMSE 56 53 62 68 62 59 Adelaide 2,307 166 
MBE -6 7 3 3 -1 3 
RMSE 55 62 65 59 59 59 Darwin 1,179 115 MBE 8 22 38 22 23 23 
RMSE 61 57 69 65 67 64 Maputo 3,548 170 MBE 2 12 22 1 4 10 
RMSE 63 67 72 70 71 64 Reunion 2,045 183 MBE 9 23 25 4 6 16 
RMSE 40 41 44 50 47 39 Bracknell 3,613 172 
MBE -11 -14 -17 -18 -18 -12 
RMSE 47 51 53 54 54 48 Macau 3,513 195 MBE 7 10 11 -3 -2 9 
RMSE 34 33 35 39 38 33 Uccle 3,639 150 MBE 7 3 4 1 2 7 
RMSE 50 51 56 57 56 52 All sites 19,844 169 
MBE 1 6 9 -2 0 6 

 
average, and for all the sites (see last line of Table 4), the 
BRL model reduces the RMSE of the diffuse fraction by 
1% , 6%, 9% and 9% when compared respectively to the 
Skartveit model, the Reindl model, the Erbs model and 
the old logistic model (see Eq. (1)). 
 
In a similar way, the performance of the BRL model 
regarding the MBE is quite good (apart again the Uccle 
site). In addition, the BRL model produces better MBE at 
southern sites like Darwin, Maputo and Reunion than 
the other models. Overall, the results seem to be 
consistent between all the models. Indeed, all the models 
tend to overestimate the diffuse fraction (with only one 
exception for the Adelaide station) and a closer look at 
Table 4 reveals that all the models underestimate the 
diffuse fraction for the Bracknell data.  
 

In terms of RMSE of hourly diffuse irradiance (see Table 
5), on an overall basis, we can state that the BRL model 
performs better (or equally well as the Skartveit model) 
than the others models. Indeed, for all the sites, the BRL 
model diminished the RMSE by 1% when compared to 
the Skartveit model. Conversely, its overall performance 
against the Reindl model or the Erbs model is much 
better (11% and 12% of RMSE improvement 
respectively). In addition, our goal to enhance the fit of 
the old logistic model (see Eq. (1)) is also reached as the 
BRL model increase by a factor of 11% the performance 
of the previous model. 
 
The better performance of the BRL model and the 
Skartveit model against the Erbs or the Reindl model 
confirm (see Skartveit et al., 1998; Gonzales and Calbo, 
1999) the improvement brought by adding further 
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predictors such as the variability index 3σ or the 
persistence variable φ . 
 
On an overall basis, the performance of the BRL 
regarding the MBE of the diffuse irradiance is better than 
that of the other models. Again, it is also worth noticing 
that this better performance is more pronounced for the 
southern sites. Further, irrespective of the location, and 
unlike the other models, the variation of the MBE for the 
BRL model remains in the range [  (see 
also Figure 2) . 

] -210; 10  W.m− +

 
Finally, in order to better appreciate the overall 
performance of the BRL model against the other models, 
group mean values of measured diffuse irradiance data 
(sorted by clearness index) and model response were 
calculated (see Figure 3). 
 
As seen in Figure 3, the better overall performance of the 
BRL model against the models of Reindl et al. (1990) or 
Erbs et al. (1982) are clearly exhibited. Additionally, the 
performance of the BRL against the model of Skartveit et 
al. (1998) is slightly better. However, one may keep in 
mind that the expression of the Skartveit model is much 
more complicated than the BRL model.  
 
Nonetheless, in order to get a more detailed comparison 
between these 2 best performers, we report in Table 6 
the overall performance (RMSEs and MBEs of hourly 
diffuse irradiance) of the 2 models for the 7 sites of the 
test dataset (19844 data points) sorted by clearness index 
and solar elevation. Table 7 also gives the number of 
validation data together with the mean diffuse irradiance 
in each bin. 
 
Hence, one may notice that the small edge of the BRL vs 
the Skartveit model comes from a better treatment of the 
intermediate ( ) clearness index range 
(which corresponds to 67% of the test data). More 
precisely, in this central bin, the BRL reduced the RMSE 
by 4% when compared to the Skartveit model. At the 
opposite, and to confirm our preceding discussion about 
the high range of clearness index, the BRL yields a worse 
performance in the high clearness index range ( 0.75tk > ). 
The disagreement is reinforced at decreasing solar 
elevations. But, again, as stated in section 5.1, we chose 
to not treat this special case of high range of clearness 
index, especially since it is dominated by the incidence of 
low energy values. Moreover, in our opinion, the small 
amount of data in this bin (2% of all the data) is not 
commensurate with the extra effort required to derive a 
specific correlation.  

0.25 0.75tk< ≤

 

 
Figure 2. Variations of models MBE of diffuse solar 
irradiance as a function of location. 
 

 
Figure 3. Modelled vs measured group mean hourly diffuse 
irradiance for the all the test sites. Modelled data are 
obtained from group mean values of clearness index. 
 
As mentioned above, the BRL model performs slightly 
better against the Skartveit model. However, the 
expression of the Skartveit model is much more 
complicated than the BRL model. Therefore, in order to 
be assessing quantitatively this previous statement, we 
propose in the next section to calculate the DIC for each 
model. 
 
5.3. DIC as a model selection criterion for diffuse 
fraction models 
 
Table 8 lists the DIC for each model. As mentioned in 
Appendix B, DIC is allowed to be negative and only 
differences in DIC are important (its absolute size is 
irrelevant). The idea is that models with smaller DIC 
should be preferred to models with larger DIC. 
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Table 6. BRL and Skarveit models’ overall RMSEs ( )-2W.m  and MBEs ( )-2W.m  for the 7 sites of the test dataset (19844 

points) as a function of clearness index and solar elevation. 
20α ≤ °  20 40α° < ≤ °  40 60α° < ≤ °  60α > °  α∀  

BRL Model 
 RMSE 

 
MBE RMSE MBE RMSE MBE RMSE MBE RMSE 

 
MBE 

kt ≤ 0.25  
3  0 4  0 6  0 11  0 5 -1 

0.25 < kt ≤ 0.75  
28  4 43  5 62  -1 88  -2 54 3 

kt > 0.75  
95  0 56  -1 53  0 74  1 62 -2 

∀ kt  
23  6 39  3 56  -1 77  -2 50 1 

α ≤ 20°  20° < α ≤ 40°  20° < α ≤ 40°  α > 60°  ∀ α  
SKARTVEIT Model 

RMSE MBE RMSE MBE RMSE MBE RMSE MBE RMSE MBE 

kt ≤ 0.25  
3  0 4  0 5  0 11  0 5  1 

0.25 < kt ≤ 0.75  
27  1 46  10 65  6 87  0 56 7 

kt > 0.75  
70  0 49  1 51 4 67  1 57 -11 

∀ kt  
22  2 41  9 58  8 74  3 51  6 

 
Table 7. Number of validation data points (# Occ.) and mean diffuse irradiance in each clearness index-solar elevation bin. 
Note that the number of occurrences is 439 for the range (2% of all the data). 0.8tk >

20α ≤ °  20 40α° < ≤ °  20 40α° < ≤ °  60α > °  α∀  #Occurrences / Mean 

( )-2W.m  #Occ. Mean #Occ. Mean #Occ. Mean #Occ. Mean #Occ. Mean 

kt ≤ 0.25  1251 11 1437 24 845 23 359 12 3892 98 

0.25 < kt ≤ 0.75  2098 35 5436 160 4229 196 1396 8 13159 198 

kt > 0.75  13 1 381 7 1341 29 1058 29 2793 128 

∀ kt  3362 75 7254 144 6415 210 2813 250 19844 169 

 
 
As seen in Table 8, according to the DIC, the BRL model 
achieves the best trade-off between goodness-of-fit and 
model complexity. The sizeable difference in DIC 
between the BRL model and the Skartveit model gives 
strong evidence for the selection of the former. Moreover, 
the ranking obtained from the DIC results seems quite 
consistent with the previous results (see section 5.2). The 
problem of finding the optimal complexity for a model 
provides an example of Occam’s razor (MacKay 2003).  
This is the principle that one should prefer simpler 
models to more complex models, and that this preference 
should be traded off against the extent to which the 
model fits the data. To put it in other words, an increase 
in the number of predictors will always improve the fit. 
Information criteria reflect the concept that an extra 
predictor should give a commensurate improvement in 
goodness-of-fit. 
 
As seen in Table 8, according to the DIC, the BRL model 
achieves the best trade-off between goodness-of-fit and 
model complexity. The sizeable difference in DIC 
between the BRL model and the Skartveit model gives 

strong evidence for the selection of the former. Moreover, 
the ranking obtained from the DIC results seems quite 
consistent with the previous results (see section 5.2). The 
problem of finding the optimal complexity for a model 
provides an example of Occam’s razor (MacKay, 2003). 
This is the principle that one should prefer simpler 
models to more complex models, and that this preference 
should be traded off against the extent to which the 
model fits the data. To put it in other words, an increase 
in the number of predictors will always improve the fit. 
 
 
Table 8. DIC values as estimated by the WinBUGS 
program for each diffuse fraction model. The column 
Relative difference reports the difference in DIC between 
the BRL model and the other models. 
Diffuse fraction 

model 
DIC Relative 

difference 
Rank 

BRL  -5524 N/A 1 
Skartveit -4932 592 2 
Reindl -4589 935 3 
Erbs -4441 1083 4 
Old logistic -4397 1127 5 
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Information criteria reflect the concept that an extra 
predictor should give a commensurate improvement in 
goodness-of-fit. 
 
5.4. Comparison with the Perez model 
 
The Perez model (Perez et. al. 1992) is well regarded in 
the solar radiation modelling fraternity. We have not 
included it in the comparisons above since it estimates 
direct normal rather than diffuse radiation from global 
and uses other variables. It should be noted that 
requirements for knowledge values of the three 
components of radiation differ between technologies. 
Direct normal solar irradiance (DNI) is needed for 
concentrated solar power systems (CSP) and global 
horizontal solar irradiance (GHI) for flat plate collectors 
such as photovoltaic cells and solar hot water heaters. In 
the latter case, diffuse horizontal solar irradiance is 
necessary to estimate the global on a tilted surface when 
only the GHI is known or estimated from satellite derived 
data. The procedure proceeds in this manner: 
 
• the diffuse on the horizontal is estimated from GHI ; 
• the direct on the horizontal is derived by subtracting 

diffuse from GHI ; 
• trigonometric calculations are used to calculate 

direct on the tilted surface ; 
• the algorithms derived in Perez et. al. (1990) or 

similar are used to estimate the diffuse on the tilted 
surface ; 

• the global on the tilted surface is calculated by 
adding direct and diffuse. 
 

Obviously the DNI as estimated using Perez et. al. (1992) 
could be used in this exercise, with use of trigonometry to 
get the direct on the horizontal to infer the diffuse on the 
horizontal, and also to get the direct on the tilted surface. 
One can, however, see the impetus for developing models 
for diffuse on the horizontal from GHI as well as models 
for DNI. 
 
We wish to present a comparison of the BRL model to 
the Perez model. We do this in two ways statistically as 
well as presenting a visual explanation. We won’t 
delineate the comparison in terms of diffuse radiation 
since that is reported in Ridley et. al. (2009). We will 
only summarise results from that work. In it, the Perez 
model was used to predict DNI and the direct on the 
horizontal was derived from that and then the diffuse on 
the horizontal derived, and compared to that estimated 
using the BRL model. The BRL model consistently 
outperformed Perez using Median Absolute Percentage 
Error (MeAPE) and Bayesian Information Criterion (BIC) 
for several locations in both Southern and Northern 

Hemispheres. Assessing the Median Bias Error (MeBE), 
we found that for only two Northern Hemisphere 
locations did Perez outperform BRL and then only 
marginally.  
 
We next reverse the direction of estimation for 
comparison. We take the diffuse on the horizontal 
estimated from BRL and calculate the direct on the 
horizontal through subtraction from the GHI. We then 
use the equation . .DNI direct on horizont / sinal α= where 
as stated previously, α is the solar elevation. This may 
seem redundant, but when comparing model results, it is 
best to ensure the procedures work both ways. When we 
compare the predicted versus actual for the Adelaide 
data set, we find an MeAPE of 8.77 for the BRL model 
and 21.06 for the Perez model. Overall, the BRL model 
performs better than the Perez model for Southern 
hemisphere locations and at least as well for Northern 
Hemisphere locations. 
 
A visual comparison of the two models using data from 
Adelaide, a Southern Hemisphere location, is instructive, 
and demonstrates the motivation for the series of papers 
on this topic. Figure 4 gives the diffuse fraction plotted 
against the clearness index overlain with the estimated 
diffuse fraction using the Perez model. It is easily seen 
that the bottom right hand corner of the data is not well 
predicted. If we compare that to the same graph but with 
the predictions performed with the BRL model, we see 
that this discrepancy is taken care of (Figure 5). The lack 
of suitability of models developed with solely Northern 
Hemisphere data that were inadequate for Southern 
Hemisphere locations was what led first Spencer (1982), 
and subsequently Boland et. al. (2001), Boland et. al. 
(2008) and Ridley et. al. (2009) to revisit the problem. 
 
5.5. Bayesian inference vs classical least-squares 
technique 
 
Let us recall that the other goal of this work was to 
evaluate the advantage brought by the Bayesian inference 
over the classical Least-Squares (LS) technique.  
 
To assess this particular point, we fit the BRL model 
(with the training dataset given in Table 1) by using the 
classical Least-Squares (LS) technique. The following 
model (denoted LS model) was obtained: 
 

kd =
1

1+exp −4.60+6.54kt −0.04AST−0.0054α+1.71KT +0.85φ( ) 
(11) 

 
Note that the performance of this LS model is given in 
Tables 4 and 5 under the LS column. 
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Figure 4. Diffuse fraction versus clearness index for 
Adelaide with Perez model predictions. 
 

 
Figure 5. Diffuse fraction versus clearness index for 
Adelaide with BRL model predictions. 
 
Figure 6 gives a comparison of the two approaches 
regarding the diffuse irradiance. As seen, the clear 
advantage brought by the Bayesian inference is the better 
MBE (particularly for the southern hemisphere sites). 
 
This result is not surprising as we used a student-t 
distribution for the likelihood distribution (as opposed to 
a Gaussian distribution that is related to the classical 
Least-squares techniques). Indeed, the student-t density 
is a heavier tailed alternative to the Normal bell-shaped 
like the Gaussian but with a higher chance of extreme 
values in the tails. In this sense, it is a robust alternative 
to the Gaussian in the event of suspected outliers in the 
data. 
 
Moreover, we can state that the use of southern 
hemisphere data to tune the model parameters (BRL and 
LS) naturally improve the performance of these models 
on the southern test stations, while performing at least as 
well as the best other available models for the northern 
hemisphere test stations. However the Bayesian method 
goes a step further by improving the MBE. 

 
 
Figure 6. BRL model against LS model. Variations of 
models RMSE and MBE of diffuse solar irradiance as a 
function of location. 
 
6. Conclusion 
 
In this work, we have proposed a Bayesian logistic model 
(called the BRL model) that consists of a single equation 
for the entire data as opposed to a set of correlations used 
in models like Skartveit et al (1998), Reindl et al. (1990) 
and Erbs et al. (1982). A test against independent data 
from seven worldwide locations showed that the BRL 
model improved by 10% the root mean square error 
(RMSE) when compared to the models of Reindl and 
Erbs. The improvement in the RMSE is less pronounced 
when compared to the (much more complicated) 
Skartveit model. Regarding this particular point of model 
complexity, it has been demonstrated that using an 
information criterion like the DIC led clearly to the 
selection of the BRL model. 
 
In addition, on an overall basis, the BRL model exhibited 
a better Mean Bias Error irrespective of the station than 
the other models. It has been shown that this 
characteristic comes from the use of the Bayesian 
inference instead of a classical approach.  
The results obtained from the Bayesian inference may 
exhibit some sensitivity to the division of data used for 
training and testing the models. It would be desirable to 
use all the available data for estimating the parameters of 
the BRL model but we feel this would be unfair to the 
other models. If more data are available for tuning the 
model (or if there is need for recalibration accounting for 
local climatic differences) then one can refine the 
estimation of the parameters in the Bayesian framework. 
Indeed, all this previous work is not wasted as the 
preceding model's parameters (see Table 3) can be used 
as prior information for the derivation of the new model.  
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In our opinion, the solar radiation modelling community 
can greatly benefit from the Bayesian framework. Thus, it 
is worth using rather theoretically complicated modelling 
tools (though uncomplicated in practice) that could 
improve the quality of solar radiation models. 
 
 
APPENDIX A: Bayesian Computations 
 
A.1. The Probabilistic Model 
 
This section gives some details about the implementation 
of the probabilistic model needed to fit the proposed 
model to the data. We successively describe each 
component of Eq. (8) i.e. the likelihood and the prior for 
the parameters. 
 
The likelihood function 
 
Let us consider the following form: 
 

 di = yi + ε i  (A1) 
 
where  represents the ith experimental measurements of 
the diffuse fraction , 

id
[ 0 1 1 2 3 4, , , , , ]α α β β β βΘ =

( , )i iy y= Θx

]t i
K

 the vector 

of model parameters,  the ideal (noiseless) 
model response or regression model, 

[k ASTi t α φ=x the corresponding vector of 

predictor variables and where the noise iε  is an 
expression of the various uncertainties (i.e. measurement 
noise plus modelling error). If the noise in the data is 
assumed to be Gaussian with variance 2σ , then  
 

  
p(ε i ) =

1
2πσ 2

exp −
1

2σ 2
ε i

2⎛

⎝⎜
⎞

⎠⎟  
 

(A2) 

which we can rewrite, by using Eq. (A1) as : 
 

  
p(di Θ) =

1
2πσ 2

exp −
1

2σ 2
di − yi( )2⎛

⎝⎜
⎞

⎠⎟  
 

(A3) 

Notice that this pdf can be written in a more compact 
manner as: 
 

   di : N( yi ,σ
2 )  (A4) 

 

which means that each measurement  is distributed as 

a Gaussian or Normal distribution with mean and 

variance 

id

iy
2σ . 

 
Further, if we assume the noise as independent and 
additive then the likelihood function takes the following 
form: 

( ) 22 21

1 1( | ) | exp ( )
2(2 )

n

i n
i

p D p d S θ
σπσ=

⎛Θ = Θ = −⎜
⎝

∏ ⎞
⎟
⎠

 (A5) 

where n represents the number of experimental 

measurements and the term  is the 

sum-of -squares of the residuals.  

2

1

( ) ( )
n

i i
i

S d
=

Θ = −∑ y

 
Hence, one may notice that the classical least-squares 
(LS) technique is derived from the principle of maximum 
likelihood (ML) with a choice of a Gaussian distribution 
for the likelihood. Indeed, the ML principle consists in 
maximising the likelihood which is turn equivalent to 
minimising the negative log likelihood. The latter is the 
usual sum-of-squares.  
 
However, in this survey, even if a quality-check has been 
done on the data, we chose a student’s-t distribution for 
the likelihood function i.e. :St( , , )i id y λ ν  where λ  is the 
precision and ν  the number of degrees of freedom that 
determines the extent of over-dispersion. Student’s t-
distribution has in general longer ‘tails’ than a Gaussian. 
This gives the important property of robustness which 
means that it is less sensitive than the Gaussian 
distribution to the presence of a few data points which 
are outliers (Bishop, 2006).  
 
The prior distributions 
 
For the BRL model, we make use of the information 
obtained from the previous step (See Eq. (1) and Boland 
et al. 2008). Indeed, as mentioned above, Bayesian 
inference offers a framework (through the use of prior 
information) to continuously update our posterior beliefs. 
All previous work is not wasted as the preceding model 
parameters can be used as prior information for the 
derivation of the parameters estimates of the next (new) 
model. As an illustration, for parameters ( )0 1,α α , we 
chose two normal distributions with a relatively small 
variance and with mean given by the values of the 
parameters of the first logistic model (Eq. (1)). Regarding 
the last four parameters ( )1 2 3 4, , ,β β β β , we chose four 
Gaussian distributions with mean 0 and with large 
variance as we have no idea of the values they can 
plausibly take. 
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This setting is detailed in Table A1.  
 
Table A1. Probabilistic model 
Likelihood   ( | )p D Θ
Student’s t-distribution 

Prior on parameters 
( )p Θ  

Gaussian distributions 
( , , 2)i id St y λ ν =∼  

0 N( 5,100)α −∼  

yi =
1

1+ exp α0 +α1kt + β1AST + β2α + β3KT + β4φ( )
 

1 N(8.60,100)α ∼  

[ ]0 1 1 2 3 4, , , , ,α α β β β βΘ =

[
 1 N(0,1000000)β ∼  

]i t t i
k AST Kα φ=x  

2 N(0,1000000)β ∼  
 

3 N(0,1000000)β ∼
 

4 N(0,1000000)β ∼
 
A.3 Computation of the posterior distribution of the 
model parameters with MCMC numerical methods 
 
Given the likelihood and the posterior, the MCMC 
implemented in WinBUGS samples the posterior given by 
Eq. (8). More precisely, MCMC generates samples from 
the posterior parameter space Θ by defining a 
chain . At each iteration i, 

candidate values  are generated randomly for each of 
the parameters. An acceptance probability is calculated, 
and the chain either moves to  (Θ = ) or stays at 
its current value ( ). In the long run, the 
distribution of points in the chain C approximates the 
posterior distribution. When the chain converges, the 
posterior distribution of each parameter of interest can be 
drawn or summarized by the following statistics: mean, 
standard deviation, 95% credibility interval, etc. 

{ 1 2 3, , , , iC = Θ Θ Θ Θ" "
*Θ

1i+Θ = Θ

}

1i+
*Θ

i

*Θ

 
APPENDIX B: Deviance Information Criterion 
(DIC)  
 
The deviance information criterion (DIC) is particularly 
useful in Bayesian model selection problems where the 
posterior distributions of the models have been obtained 
by Markov chain Monte Carlo (MCMC) simulation 
(Spiegelhalter et al., 2002). Indeed, the deviance defined 
as ( ) ( )2logD pΘ = − Θ⎡⎣ D ⎤⎦ where ( )p D Θ  is the likelihood 

function is automatically calculated under WinBUGS 
(Winbugs, 1989). 
 
The DIC is the sum of two terms: a first term, the 
posterior mean of the deviance, that measures goodness 
of fit (adequacy) of the model, and a second term of 
penalty, DP  which estimates the complexity of the model: 
 

( ) DDIC D P= Θ +  (B1) 

The first component is defined as the posterior mean of 
the deviance: 
 

( ) ( )[ ]D E DΘ = Θ  (B2) 

 
The expectation ( )D Θ  is a measure of how well the 
model fits the data; the larger this is, the worse the fit. 
 
The second term measures the complexity of the model 
by the effective number of parameters, defined as the 
difference between the posterior mean of the deviance 
and the deviance evaluated at the posterior mean θ  of 
the parameters: 
 

( ) ( )DP D Dθ θ= −  (B3) 
 
As seen, DP represents the decrease in the deviance 
expected from estimating Θ  and can be used as a 
measure of the effective number of parameters 
(comparatively, one has to specify the number of model 
parameters when using information criteria such as BIC 
or AIC). The larger DP  is, the easier it is for the model to 
fit the data.  
 
The idea is that models with smaller DIC should be 
preferred to models with larger DIC. Indeed, models are 
penalized both by the value of ( )D Θ  but also by the 
effective number of parameters. Since ( )D Θ  will decrease 
as the number of parameters in a model increases, the 
term DP  compensates for this effect by favoring models 
with a smaller number of parameters. DIC is allowed to 
be negative as a probability density ( )p D Θ  can be 
greater than 1 if has a small standard deviation. Only 
differences in DIC are important. Its absolute size is 
irrelevant. 
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