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Increasing awareness and data availability has made statistical analysis an integral part of managerial decision making.  
Forecasting, in particular, has become an essential skill for all financial analysts, economists, marketing and accounting 
professionals.  Arguably all business students should be educated in forecasting techniques with an emphasis on ARMA 
modeling.  While statistical packages such as Eviews have increasingly become user friendly, the discussion and the im-
plementation of the important diagnostic analysis of ARMA models in popular undergraduate textbooks has not been to-
tally satisfactory.  This paper succinctly outlines this important diagnostic step for ARMA modeling with Eviews, using 
monthly data on 3-month government Treasury bills rate for illustration.  The presentation is accessible to readers with 
an intermediate level of statistics. 
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Introduction 
 
Forecasting is an important aspect of statistical analysis 
that provides guidance for decisions in all areas of busi-
ness.  It is important to be able to make sound forecasts 
for variables such as sales, production, inventory, interest 
rates, exchange rates, real and financial asset prices for 
both short and long term business planning.  In essence, 
the success of any business or government organization 
depends on the ability to accurately forecast its revenue 
and expenditure.  Auto-regressive moving average (AR-
MA) models provide a unifying framework for forecast-
ing.  These models are aided by the abundance of high 
quality data and easy estimation and evaluation by statis-
tical packages.   
 
There are numerous applications where researchers have 
employed basic as well as advanced ARMA models for 
forecasting.  While a seasoned researcher is well versed in 
these models, the details and easy to follow steps of AR-

MA modeling, which may be invaluable to a business 
student or a practitioner, are not available.  For instance, 
popular textbooks in econometrics, including Using Eco-
nometrics (2011) by Studenmund and Introductory Econo-
metrics: A Modern Approach (2009) by Jeffrey Wooldridge 
provide no formal discussion of ARMA models.  While 
specialized books such as Elements of Forecasting (2008) 
by Francis Diebold and Business Forecasting (2009) by 
Hanke and Wichern discuss ARMA models, their sug-
gested diagnostic analysis of the models has not been 
comprehensive.1  For instance, these books do not pro-
vide a unified treatment of in-sample and out of sample 
analysis of competing models.  This paper succinctly out-
lines the important step of diagnostic analysis of ARMA 
models with Eviews, using monthly data on 3-month gov-
ernment Treasury bills rate for illustration.  

                                                 
1 Advanced textbooks such as Enders (2005) do the job properly. 
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There are a number of useful issues that students and 
practitioners must understand regarding the analysis of 
ARMA models.  First, an intuitive understanding of sta-
tionarity is essential since these models can only be iden-
tified for stationary series.   Informal graphs can be used 
to look for departures from the  constancy of the mean 
and the variance.  We generally difference the series to 
achieve constancy of the mean.  However, if both the 
mean and the variance are time-varying, we also need a 
dampening or a pre-differencing transformation.  This 
simple explanation is left out in the textbooks by Diebold 
as well as Hanke and Wichern.  Since economic theory 
provides no guidance on transformations, the natural log 
or square root pre-transformations may produce better 
forecasts.  Students and practitioners must be advised to 
identify several ARMA models with various transforma-
tions and use model selection criteria to pick the most 
appropriate model.   
 
Another issue that has not been explicitly stated is a con-
sistent definition of the residuals that works for all mod-
els, with or without pre-transformations.  Statistical 
packages usually store the residuals of the estimated 
models on the basis of pre-transformations.  Therefore, 
the model selection measures that emerge from such resi-
duals are not comparable. 2  Finally, since forecasting is 
essentially an out-of-sample problem, competing models 
must also be compared on the basis of their performance 
outside the sample period.  This important analysis of the 
out of sample forecast errors based on static and dynamic 
methods has been left out in popular textbooks. 
 
Model Identification 
 
Let  represent a sample of T observations of 

a variable of interest y .  Consider a time series 
1 2, ,..., Ty y y

{ }ty
representing the monthly interest rate of 3-month Trea-
sury bills for a sample period of January 1984 to Decem-
ber 2007 (see Table 1).  This application is used through-
out the paper to motivate and implement ARMA fore-
casting models.  
 
Since stationarity is essential for the identification of an 
ARMA model, the first step is always to test for stationar-
ity of the underlying series.  While many macroeconomic, 
business, and financial series are not stationary, the series 
can easily be made stationary by differencing with or 
without pre-transformations.  Formally, { }ty  is said to be 

                                                 

2R

2 In the regression context, it is analogous to spuriously comparing 
a linear with a log-linear model on the basis of the computer gener-
ated . 

stationary if the mean, ( )tE y μ=
2

, the variance, 
2( ) ( )t tVar y E y μ σ= − =

( , ) ( )t t s tCov y y E y
, and the covariance,

( )t sy sμ μ− γ− = − − = , are all stable 
over time.  For instance, for the series to be stationary, it 
must not exhibit any stochastic trend (changing mean) or 
varying volatility (changing variance).  Whereas the sto-
chastic trend is generally removed by first differencing of 
the series, the varying volatility can be reduced with a 
natural log or square root pre-differencing transforma-
tion.  As mentioned earlier, the important discussion of 
pre-transformations is left out in the above textbooks 
although they include the applications of growth rates 
based on log transformations. 
 
A simple plot of the series is often used as an informal 
test for stationarity.  The series is considered stationary if 
the level and the spread do not exhibit any visual changes 
over time.   The plot of the autocorrelation function also 
serves as another visual test for stationarity.3  The series 
is considered stationary if the ACF cuts off, or dies down, 
fairly quickly.  A plot of the monthly interest rate series in 
Figure 1 indicates non-stationarity as it exhibits an ob-
vious trend.   
 

 
Figure 1.  3-month Treasury Bill Rate 
 
The differenced series specified in terms of a lag operator 
L , 1 (1 )t t ty y L y−− = − , is plotted in Figure 2.  As is 
often the case with graphical tests, it is not clear whether 
or not the variance of the differenced series is time inva-
riant.  In such situations, it is recommended to also con-
sider pre-transformations and use model selection criteria 
to determine the most appropriate model for forecasting.   

                                                 
3 In Eviews, choose 'Correlogram' from 'Series Statistics' to get the 
autocorrelation (ACF) and the partial autocorrelation (PACF) 
functions of the series.   
 

0

2

4

6

8

10

12

84 86 88 90 92 94 96 98 00 02 04 06

 



- 61 - Forecasting with ARMA Models / Jaggia 
 
 

  

 
Table 1.  3-Month Treasury Bill Rate 

Date Tbill Date Tbill Date Tbill Date Tbill Date Tbill Date Tbill 

Jan-84 8.90 Jan-88 5.81 Jan-92 3.80 Jan-96 5.00 Jan-00 5.32 Jan-04 0.88 
Feb-84 9.09 Feb-88 5.66 Feb-92 3.84 Feb-96 4.83 Feb-00 5.55 Feb-04 0.93 
Mar-84 9.52 Mar-88 5.70 Mar-92 4.04 Mar-96 4.96 Mar-00 5.69 Mar-04 0.94 
Apr-84 9.69 Apr-88 5.91 Apr-92 3.75 Apr-96 4.95 Apr-00 5.66 Apr-04 0.94 
May-84 9.83 May-88 6.26 May-92 3.63 May-96 5.02 May-00 5.79 May-04 1.02 
Jun-84 9.87 Jun-88 6.46 Jun-92 3.66 Jun-96 5.09 Jun-00 5.69 Jun-04 1.27 
Jul-84 10.12 Jul-88 6.73 Jul-92 3.21 Jul-96 5.15 Jul-00 5.96 Jul-04 1.33 
Aug-84 10.47 Aug-88 7.06 Aug-92 3.13 Aug-96 5.05 Aug-00 6.09 Aug-04 1.48 
Sep-84 10.37 Sep-88 7.24 Sep-92 2.91 Sep-96 5.09 Sep-00 6.00 Sep-04 1.65 
Oct-84 9.74 Oct-88 7.35 Oct-92 2.86 Oct-96 4.99 Oct-00 6.11 Oct-04 1.76 
Nov-84 8.61 Nov-88 7.76 Nov-92 3.13 Nov-96 5.03 Nov-00 6.17 Nov-04 2.07 
Dec-84 8.06 Dec-88 8.07 Dec-92 3.22 Dec-96 4.91 Dec-00 5.77 Dec-04 2.19 
Jan-85 7.76 Jan-89 8.27 Jan-93 3.00 Jan-97 5.03 Jan-01 5.15 Jan-05 2.33 
Feb-85 8.27 Feb-89 8.53 Feb-93 2.93 Feb-97 5.01 Feb-01 4.88 Feb-05 2.54 
Mar-85 8.52 Mar-89 8.82 Mar-93 2.95 Mar-97 5.14 Mar-01 4.42 Mar-05 2.74 
Apr-85 7.95 Apr-89 8.65 Apr-93 2.87 Apr-97 5.16 Apr-01 3.87 Apr-05 2.78 
May-85 7.48 May-89 8.43 May-93 2.96 May-97 5.05 May-01 3.62 May-05 2.84 
Jun-85 6.95 Jun-89 8.15 Jun-93 3.07 Jun-97 4.93 Jun-01 3.49 Jun-05 2.97 
Jul-85 7.08 Jul-89 7.88 Jul-93 3.04 Jul-97 5.05 Jul-01 3.51 Jul-05 3.22 
Aug-85 7.14 Aug-89 7.90 Aug-93 3.02 Aug-97 5.14 Aug-01 3.36 Aug-05 3.44 
Sep-85 7.10 Sep-89 7.75 Sep-93 2.95 Sep-97 4.95 Sep-01 2.64 Sep-05 3.42 
Oct-85 7.16 Oct-89 7.64 Oct-93 3.02 Oct-97 4.97 Oct-01 2.16 Oct-05 3.71 
Nov-85 7.24 Nov-89 7.69 Nov-93 3.10 Nov-97 5.14 Nov-01 1.87 Nov-05 3.88 
Dec-85 7.10 Dec-89 7.63 Dec-93 3.06 Dec-97 5.16 Dec-01 1.69 Dec-05 3.89 
Jan-86 7.07 Jan-90 7.64 Jan-94 2.98 Jan-98 5.04 Jan-02 1.65 Jan-06 4.24 
Feb-86 7.06 Feb-90 7.74 Feb-94 3.25 Feb-98 5.09 Feb-02 1.73 Feb-06 4.43 
Mar-86 6.56 Mar-90 7.90 Mar-94 3.50 Mar-98 5.03 Mar-02 1.79 Mar-06 4.51 
Apr-86 6.06 Apr-90 7.77 Apr-94 3.68 Apr-98 4.95 Apr-02 1.72 Apr-06 4.60 
May-86 6.15 May-90 7.74 May-94 4.14 May-98 5.00 May-02 1.73 May-06 4.72 
Jun-86 6.21 Jun-90 7.73 Jun-94 4.14 Jun-98 4.98 Jun-02 1.70 Jun-06 4.79 
Jul-86 5.83 Jul-90 7.62 Jul-94 4.33 Jul-98 4.96 Jul-02 1.68 Jul-06 4.95 
Aug-86 5.53 Aug-90 7.45 Aug-94 4.48 Aug-98 4.90 Aug-02 1.62 Aug-06 4.96 
Sep-86 5.21 Sep-90 7.36 Sep-94 4.62 Sep-98 4.61 Sep-02 1.63 Sep-06 4.81 
Oct-86 5.18 Oct-90 7.17 Oct-94 4.95 Oct-98 3.96 Oct-02 1.58 Oct-06 4.92 
Nov-86 5.35 Nov-90 7.06 Nov-94 5.29 Nov-98 4.41 Nov-02 1.23 Nov-06 4.94 
Dec-86 5.53 Dec-90 6.74 Dec-94 5.60 Dec-98 4.39 Dec-02 1.19 Dec-06 4.85 
Jan-87 5.43 Jan-91 6.22 Jan-95 5.71 Jan-99 4.34 Jan-03 1.17 Jan-07 4.98 
Feb-87 5.59 Feb-91 5.94 Feb-95 5.77 Feb-99 4.44 Feb-03 1.17 Feb-07 5.03 
Mar-87 5.59 Mar-91 5.91 Mar-95 5.73 Mar-99 4.44 Mar-03 1.13 Mar-07 4.94 
Apr-87 5.64 Apr-91 5.65 Apr-95 5.65 Apr-99 4.29 Apr-03 1.13 Apr-07 4.87 
May-87 5.66 May-91 5.46 May-95 5.67 May-99 4.50 May-03 1.07 May-07 4.73 
Jun-87 5.67 Jun-91 5.57 Jun-95 5.47 Jun-99 4.57 Jun-03 0.92 Jun-07 4.61 
Jul-87 5.69 Jul-91 5.58 Jul-95 5.42 Jul-99 4.55 Jul-03 0.90 Jul-07 4.82 
Aug-87 6.04 Aug-91 5.33 Aug-95 5.40 Aug-99 4.72 Aug-03 0.95 Aug-07 4.20 
Sep-87 6.40 Sep-91 5.22 Sep-95 5.28 Sep-99 4.68 Sep-03 0.94 Sep-07 3.89 
Oct-87 6.13 Oct-91 4.99 Oct-95 5.28 Oct-99 4.86 Oct-03 0.92 Oct-07 3.90 
Nov-87 5.69 Nov-91 4.56 Nov-95 5.36 Nov-99 5.07 Nov-03 0.93 Nov-07 3.27 
Dec-87 5.77 Dec-91 4.07 Dec-95 5.14 Dec-99 5.20 Dec-03 0.90 Dec-07 3.00 

Source: Board of Governors of the Federal Reserve System 
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Figure 2.  Differenced 3-month Treasury Bill Rate 
 

 
Figure 3.  Differenced, in logs, 3-month Treasury Bill Rate 
 

 
Figure 4.  Differenced, in square roots, 3-month Treasury 
Bill Rates 
 
Figures 3 and 4 contain the graphs of the series of diffe-
renced logs ( ) and diffe-

renced square roots (

1ln ln (1 ) lnt ty y L−− = −

1 (1 )t t ty y L−− = − y

                                                

) re-

spectively.  The ACF and the PACF of the three trans-
formed series are presented in Table 2.  The simple plots 
as well as the ACF graphs suggest that the transformed 
series are all stationary.4 

 
4 Dickey-Fuller tests for a unit root, although not included in the 
paper, corroborate the findings of informal graphical tests. 
 

Table 2.  Autocorrelations and Partial Autocorrelations of 
Transformed Series 

Lag (1 )L Tbills−  (1 ) ln( )L Tbills−  (1 )L Tbills−  

 AC PAC AC PAC AC PAC 
1 0.509* 0.509* 0.502* 0.502* 0.501* 0.501* 
2 0.200* -0.079 0.285* 0.044 0.245* -0.008 
3 0.159* 0.122 0.314* 0.208* 0.245* 0.168* 
4 0.129* 0.010 0.236* -0.001 0.188* 0.004 
5 0.164* 0.120 0.224* 0.100 0.199* 0.115 
6 0.228* 0.121 0.298* 0.151 0.267* 0.139* 
7 0.162* -0.026 0.295* 0.086 0.224* 0.020 
8 0.079 -0.015 0.197* -0.039 0.160* 0.005 
9 0.094 0.052 0.195* 0.043 0.170* 0.051 
10 0.012 -0.111 0.104 -0.114 0.057 -0.126 
11 0.025 0.054 0.092 0.030 0.056 0.040 
12 0.019 -0.069 0.076 -0.071 0.051 -0.068 
13 -0.108 -0.151 0.031 -0.052 -0.053 -0.124 
14 -0.049 0.097 0.054 0.015 -0.010 0.048 
15 0.095 0.112 0.025 -0.048 0.069 0.051 
16 0.081 0.000 0.017 0.019 0.051 0.024 
17 0.037 0.008 0.013 0.001 0.024 0.002 
18 0.034 0.018 0.009 0.005 0.023 0.005 
19 -0.010 0.006 -0.062 -0.070 -0.032 -0.017 
20 0.027 0.049 0.014 0.108 0.021 0.078 
Notes. AC and PAC denote autocorrelations and partial autocor-
relations respectively and their significance is compared with 

2 / 0.1231.± = ±T  * denotes significance at the 5% level. 
 
The general specification of an  model with 
mean zero, where  

( , )ARMA p q
p  and  represent the order of the 

autoregressive and moving average parts of the series, is 
given by: 

q

t 1 t 1 2 t 2 p t p t 1 t 1 2 t 2 q t q

2 p 2 q
1 2 p t 1 2 p t

y y y ... y ...

(1 L L ... L )y (1 L L ... L )

ϕ ϕ ϕ ε θ ε θ ε θ ε

ϕ ϕ ϕ θ θ θ ε

− − − − − −= + + + + + + + +

= − − − − = + + + +

  (1) 

 
where 1,2,...,i p∀ =  and 1,2,...,j q∀ =  

 1 21 1 ... 1i pandϕ ϕ ϕ ϕ− < < + + + ≠  

1 21 1 ... 1θ θ θ θ− < < + + + ≠j pand  

The error term, tε  is white noise with: 
2( ) 0, ( ) , ( , ) 0ε ε σ ε ε= = =t t t sE Var Cov t∀ ≠ s   (2) 

 
The sample autocorrelations and partial autocorrelations 
are compared with their theoretical counterparts to iden-
tify the parameters p  and .  In general, an autoregres-
sive (moving average) model is inferred if the sample au-
tocorrelations (partial autocorrelations) decay toward 
zero and the sample autocorrelations (partial autocorrela-
tions) cut off.   Let 

q

sρ  represent the autocorrelation be-

tween  and its s-period  lagged value ty t sy −  and  let ssφ  
be the corresponding partial autocorrelation.  In Table 3, 
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we present the criteria for choosing p  and  based on 
the values of the sample autocorrelations and partial au-
tocorrelations.   

q

 
Table 3. Identification of ARMA Models 

Model ACF PACF 
White 
Noise 

0 1s sρ = ∀ ≥  0 1φ ≥ss = ∀s  

MA(1) 1 0, 0 1s sρ ρ≠ = ∀ >  Direct or oscillatory 
decay toward zero 

MA(q) 1 0,..., 0, 0q s s qρ ρ ρ≠ ≠ = ∀ >  Direct or oscillatory 
decay toward zero 

AR(1) 
Direct or oscillatory 
decay toward zero 11 10, 0φ φ≠ = ∀ >ss s  

AR(p) 
Direct or oscillatory 
decay toward zero 

11 ,..., 0,0 ppφ φ≠ ≠

0ss s pφ = ∀ >  

AR-
MA(1,1) 

Decay toward zero 
beginning from 1ρ  

Decay toward zero be-
ginning from 11φ  

AR-
MA(p,q) 

Decay toward zero 

beginning from qρ  

Decay toward zero be-

ginning from φpp  

 
In most applications, the identification may not lead to a 
single model and hence several models must be examined 
with and without pre-transformations.  As mentioned 
earlier, since the underlying series is not stationary, 

 models are identified with  replaced 
with (1

( , )ARMA p q
) t

ty
L y− , , or (1 ) ln tL y− (1 ) .tL y

tL y

− We consider only 

three models for illustration.  Model 1 is a constrained 
ARMA( 6,1) model, identified from the ACF and PACF 
graphs of a differenced series, (1 .  Models 2 and 3 
are both constrained AR(6) models based on the ACF 
and PACF of differenced series with a log,  (1

)−

) ln tL y− , 
and a square root, (1 ) tL y− , pre-transformation respec-

tively. The models, and their corresponding estimation 
commands in Eviews, are given below.  
 
Model1: [ ]6

1 6 1(1 )(1 ) (1 ) : ) (1 (6)t tL L L Tbill L Eviews d MAϕ ϕ θ ε− − − = + (Tbill

[ ( ))Tbill

) AR

3)AR

    (3) 

Model2 
]  (4) 3 6

1 3 6(1 )(1 )ln( ) : (log (1) (6)t tL L L L Tbill Eviews d AR ARϕ ϕ ϕ ε− − − − =

Model3 
[ ]6

1 6(1 )(1 ) : ( (Tbil )) (6)t tL L L Tbill Eviews d sqr l A Rϕ ϕ ε− − − = (1)R A  (5) 

 
The above competing models are estimated with the data 
from 1984:01 - 2005:12.  The last 24 observations from 
2006 and 2007 are left out to analyze out of sample per-
formance of these models, which we will discuss later.  In 
Table IV, we present the estimation results of the three 
models.  All parameters of the models are statistically 
significant at a 5 percent level. 

Table 4. Parameter Estimates of Competing ARMA Models 
Parameter 
Estimates 

Model 1 Model 2 Model 3 

1ϕ  0.3148* 
(0.1080) 

0.4235* 
(0.0551) 

 0.4638* 
(0.0541) 

3ϕ  NA 
0.1469* 

(0.0567) 
NA 

6ϕ  0.1749* 
(0.0589) 

0.1651* 
(0.0561) 

0.1831* 
(0.0545) 

1θ  0.2293* 
(0.1128) 

NA NA 

Notes. Standard errors are in parentheses below the parameter estimates; * 
denotes significance at the 5% level;  Estimation period is 1984:01 – 
2005:12. Model 1:  6

1 6 1(1 )(1 ) (1 )t tL L L Tbill Lϕ ϕ θ− − − = +
3 6

6 )(1 )ln( )t tL L Tbill

ε ; Model 2: 

1 3(1 L Lϕ ϕ ϕ ε− − + − = ; Model 3: 
6

1 6(1 )(1 ) .t tL L L Tbillϕ ϕ ε− − − =  
 

 
Apart from the statistical significance of the parameters, 
an important test is that the residuals, ˆt te y yt= − , of 
the estimated model are white noise.  In other words, for 
a model to be acceptable, no discernable information 
should be left back in the residuals.  A convenient test for 
white noise is the Ljung-Box (1978) test, also called the 
Q test, which is implemented as:  

2

1

1 ˆ( 2)
( )

k

i
i

Q n n
n i

ρ
=

= +
−∑     (6) 

where ˆiρ  is the estimated autocorrelation of the residual 
at lag i and n5 is the number of residuals used for the test.  
Q has an asymptotic chi-square distribution with degrees 
of freedom given by k-p-q. The choice of k is somewhat ad 
hoc, and it is common to perform this test for various 
reasonable values of k.  A model is acceptable only when 
the null hypothesis that the residuals are white noise is 
not rejected.  It is worth pointing out that the Q test is 
implemented on the residuals and therefore the degrees 
of freedom of the test must be adjusted for the number of 
estimated parameters, p q+ .  Eviews makes this adjust-
ment in the p-values of the Q test if it is performed as a 
residual test within estimation. 6  It is common for stu-
dents to ignore this important fact and mistakenly per-
form the Q-test on the residuals outside the model.  In 
fact, Diebold makes this mistake and consequently mis-
calculates p-values throughout the book.7   
                                                 
5 The number of residuals may be smaller than the original sample 
size due to differencing and the order of the autoregression. 
6 For the Q-test of the residuals in Eviews that is adjusted for the 
degrees of freedom, choose ‘Views’ after estimation and under ‘Re-
siduals Tests’, compute ‘Correlogram – Q statistics’.  
7 On page 203 of Chapter 10, "Putting it All Together", the re-
ported p-values are spuriously large.  As a consequence his selected 
model should have  actually been discarded making the remaining 
discussion in this important chapter quite futile.  
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The top part of Table 5 presents the p-values of the Q 
test using k equal to 6, 12, and 18.  Since the p-values 
are consistently above the chosen significance level of 5 
percent, the residuals from Models 1, 2, and 3 are found 
to be white noise.  Models that pass the white noise test 
of the residuals are then subjected to a variety of model 
selection criteria to select the most appropriate forecast-
ing model.    
 
Table 5.  Model Selection Criteria Applied to Competing 
Models  

Model Selection Criteria Model 1 Model 2 Model 3 
p-value for the Q test 
(k=6) 

0.493* 0.763* 0.239* 

p-value for the Q test 
(k=12) 

0.515* 0.593* 0.339* 

p-value for the Q test 
(k=18) 

0.109* 0.815* 0.248* 

AIC of the residuals 0.0374@ 0.0381 0.0375 
SIC of the residuals 0.0389 0.0398 0.0386@ 
RMSE of forecast Errors 
(Dynamic) 

0.6820 0.6499 0.6203@ 

RMSE of forecast Errors 
(Static) 

0.2300 0.2082@ 0.2243 

Notes. * denotes that the residuals are white noise at the 5% level; @ 
denotes the best model selection measure. AIC and SIC are based on the 
residuals from 1984:08 - 2005:12; RMSE is based on the forecast errors 
from 2006:01 - 2007:12. 
Model 1:  6

1 6 1(1 )(1 ) (1 )t tL L L Tbill Lϕ ϕ θ− − − = + ε ;  

Model 2 3 6
1 3 6(1 )(1 )ln( )t tL L L L Tbillϕ ϕ ϕ− − + − =ε ;  

Model 3: 6
1 6(1 )(1 ) .t tL L L Tbillϕ ϕ ε− − − =  

 
Model Selection Criteria 
 
Competing models are compared on the basis of in-
sample predictability and out-of-sample forecasting ability.  
The comparison of in-sample predictability of the esti-
mated model is based on the residuals.  Here is where the 
confusion lies.  The residuals reported by statistical pack-
ages are not comparable across models if they are based 
on different pre-transformations.  The default residuals 
computed by statistical packages are ˆ(1 )( )t tL y y− − for 
Model 1, ˆ(1 )(ln ln )tL ty y− − for Model 2 and 

( )ˆt ty−(1 )L y−  for Model 3.  In order to compute 

model selection measures, it is important to use consis-
tently defined residuals, e ˆt t ty y= − , where ˆty can easily 
be obtained for any model.8  This issue is not raised in the 
above mentioned textbooks.   

                                                 
8 In Eviews consistently defined residuals, Resid, are easily com-
puted by choosing ‘Forecast’ from the menu and specifying the 
estimation range with ‘Static forecast’. 

Two commonly used model selection criteria, based on 
the residuals, are the Akaike Information Criterion (AIC) 
and the Bayesian Information Criterion (BIC), which are 
derived as:9 

2 2
/2exp ;⎛ ⎞= =⎜ ⎟

⎝ ⎠
∑ ∑k nt te ekAIC SIC n

n n n

2

 (7)

  
 
The AIC and SIC are based on the residual sum of 
squares and a penalty for the number of parameters used 
in the estimated model.  They both measure the informa-
tion content in the residuals; the smaller the value, the 
better is the fit.   Since model selection measures are used 
to compare models across transformations, one must first 
compute the residuals manually to derive AIC and SIC.     
 
So far we have discussed model comparison on the basis 
of their in-sample predictability.  The AIC and SIC es-
sentially compare competing models on the basis of how 
well the estimated models fit the sample data.  While 
these criteria impose a penalty for over-fitting, they are 
imperfect and can be misleading.  Sometimes a well fit-
ting model may not perform so well in making out-of-
sample forecasts.  Therefore, it is important to choose 
between competing models on the basis of both in-sample 
predictability as well as out-of sample forecasting ability.   
 
In order to analyze out of sample performance of the 
models, we generally leave out the last few observations 
from estimation.  If the sample consists of T observations, 
we estimate the model with  and leave the remaining 

 for analyzing out of sample performance, where 
1T

2T

1T T T= + .10   Alternative models are compared on the 
basis of their in-sample predictability with a shortened 
span of data and also their forecasting ability of the hold-
back period.  Out-of-sample performance is compared on 
the basis of the forecast errors, * * ˆt t *tf y y= −  for 

1 11,* 2,...,= + +T T

2T
t T .  Dynamic as well as the static 
forecasts  for observations, *ˆty , are based on the para-
meter estimates obtained from the reduced sample of 
observations.

1T
11  All dynamic forecasts are conditional on 

                                                 

1T

9  There are other monotonic transformations, including the ones 
reported by Eviews that can also be used for model comparison. 
10 The definition of the holdback period is somewhat ad hoc.  Fur-
ther, a large sample is needed to have reliable estimates in the in-
sample period and the forecast analysis in the out-of-sample period.  
11 The ideal method, though time consuming, is to make forecasts 
on the basis of recursive estimation. In other words, we first esti-
mate the model with observations to make a one-period ahead 
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the information at .  The static method conditions on 
the actual value of the variable rather than its fitted value 
to forecast beyond one period.  Therefore, while a first 
period forecast beyond the estimation sample is identical, 
subsequent forecasts can differ significantly between the 
dynamic and static methods.  The static and dynamic 
forecasts are easily computed in Eviews by choosing 
‘Forecast’ and specifying the forecast range with a static 
or a dynamic method.  With both types of forecasts, the 
preferred model will have the smallest root mean square 
error (RMSE) of the forecast errors where  

1T

2
*

2

t( ) .= ∑ f
RMSE f

T

                                                                                 

     (8) 

ther, while statistical packages such as Eviews have great-
ly simplified estimation and analysis of the ARMA mod-
els, popular undergraduate textbooks do not provide a 
comprehensive treatment of the diagnostic analysis of 
these models.  These books lack the emphasis on consis-
tently defined residuals to compare in-sample predictabil-
ity of competing models with and without pre-
transformations.  Further, since forecasting is essentially 
an out-of-sample problem, the important analysis of the 
out of sample forecast errors based on static and dynamic 
methods has also been left out.  This paper succinctly 
outlines this important diagnostic step of ARMA model-
ing, using monthly data on 3-month Treasury bills rate 
for illustration.  The easy to follow steps of ARMA mod-
eling with Eviews included in the paper can be invaluable 
to a business student or a practitioner.   

Surprisingly these simple model selection criteria have 
not been implemented in standard textbooks.    

 The lower portion of Table V contains the AIC and SIC 
of the consistently defined residuals, and the RMSE of 
the forecast errors with static and dynamic methods for 
each of the estimated models, reported in Table IV.  As is 
often the case, the four model selection criteria, namely 
AIC, SIC, RMSE (dynamic), and RMSE (static), do not 
lead to a clear winner.  However, we choose Model 3 
since it outperforms the other two models in terms of SIC 
of the residuals and RMSE (dynamic) of the forecast er-
rors.  Furthermore, Model 3 beats Model 1 and Model 2 
individually in three out of four model selection criteria.  
Interestingly, models identified on the square root pre-
transformation outperforms all other models.  As a final 
step the chosen Model 3 is re-estimated with the entire 
data from 1984 – 2007 to make a forecast of 2.9188 per-
cent for January, 2008.   
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It is worth noting that the above three models used in 
this paper are for illustration only.  There may be other 
suitable models with transformations including de-
trending.  Since economic theory provides no guidance 
on transformations or ARMA parameters, students and 
practitioners should be encouraged to identify all possible 
suitable models for comparison.  While the future is un-
certain, practitioners must use the available sample in-
formation to make the best possible forecast.  

 

 

 
 
 
   Conclusion 

 
Most academics and practitioners are in favor of impart-
ing modern forecasting tools to business and economics 
students.  Despite the obvious importance, many univer-
sities do not offer a specialized course in forecasting.  Fur-

 
1T 1ŷ + 1T 1forecast . The model is then re-estimated with + obser-

vations to forecast  etc.   
1T 2ŷ +


