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When regression analysis is carried out with a prediction purpose, an evolution in the modeled phenomenon between the 

training and the prediction stages forces the statistician to start a new analysis. Similarly, when regression aims to 

explain the modeled phenomenon, a new regression model must be estimated whenever the phenomenon or its study 

conditions change. In this paper we show how the previous regression analysis can be used for the estimation of the 

regression model in the new situation, saving a new expensive data collection effort. Two case studies are considered: 

first a regression model of house prices versus house and household features is adapted from a city in the Southern 

United States (Birmingham, AL) to another city of the United States west coast (San Jose, CA). In the second case the 

link between CO
2
 emissions and gross national product in 1999 is analyzed by using a previous analysis dating from 

1980. 

 
 

1.  Introduction 

 
In Economics as in many other fields, regression analysis 

is concerned with both the prediction of future 

phenomena and the interpretation of the data. In 

prediction, one of the main assumptions is the absence of 

evolution in the modeled phenomenon between the 

training and the prediction stages. If the assumption does 

not hold, a new regression model must be estimated 

independently from the previous analysis. For the same 

reasons, when the goal of the regression analysis is the 

interpretation of a phenomenon, studies of a same 

phenomenon but in different situations (at different 

periods of time, in different geographical places, etc.) are   

 

 

generally independently carried out. 

 

In this work, it is shown how a regression model, used in 

order to predict or to explain a phenomenon in a given 

situation, can be efficiently adapted to a new situation. 

For this, adaptive models for linear regression (Bouveyron 

and Jacques 2003) and for mixture of regressions 

(Bouveyron and Jacques 2010) are considered.  

 

In our first analysis, the goal is to predict house values in 

the city of San Jose (California, West coast) from several 

features such as housing units characteristics or 
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socio-economic information about the households that 

occupy those units. We will see that using a regression 

model previously built for the city of Birmingham 

(Alabama, South) with the same variables can save a new 

expensive collection of data in the city of San Jose. 

 

In the second study, a regression model of CO2 emissions 

in terms of the gross national product of countries is used 

for the explanation of the link between these two 

indicators. As in the previous study, we will see that data 

from 1980 and especially the regression model on these 

data can be useful for the estimation of a regression 

model on the 1999 data. Moreover, the exhibited link 

between the two regression models is informative and 

allows to explain the different evolutions of the economic 

policies of the considered countries. 

 

The paper is organized as follows: Section 2 presents the 

two datasets whereas Section 3 briefly reviews the 

methodology. Results are then analyzed and discussed in 

Section 4. 

 
2. The data 

 
In this work, two datasets with evolving populations will 

be studied. This section briefly presents both datasets. 

 
2.1. The American Housing Survey dataset 

 

The first dataset which will be used in this study is the 

1984 American Housing Survey (AHS) dataset. This is a 

statistical survey funded by the United States 

Department of Housing and Urban Development (HUD) 

and conducted by the U.S. Census Bureau. The AHS 

survey is the largest regular national housing sample 

survey in the United States; it aims to provide each year 

an overview of housing conditions in 11 U.S. 

metropolitan areas. This study focuses on two particular 

metropolitan areas: the cities of Birmingham, Alabama 

(South) and of San Jose, California (West coast). 

Fourteen relevant features have been selected among all 

available features for modeling the housing market of 

Birmingham. The dataset contains information on the 

number and characteristics of U.S. housing units as well 

as the households that occupy those units. The selected 

features for the study include the number of units in the 

property (NUNITS), the number of rooms (ROOMS), 

bedrooms (BEDRMS) and bathrooms (BATHS), the 

monthly housing cost (ZSMHC), the annual unit 

maintenance cost (CSTMNT), the monthly electricity 

cost (AMTE), the number of cars of the household 

(CARS), the unit area (UNITSF), the annual salary of 

the tenant (SAL1) and of the household (ZINC) and the 

number of persons in the household (PER). Finally, based 

on these 14 features, the response variable to predict is  

 
Figure 1. Housing value vs. area for Birmingham (AL, 

USA) and San Jose (CA,USA) 

 

the value of the housing. The difference between 

Birmingham and of San Jose is illustrated by Figure 1

which presents the value of the houses in terms of their 

areas 

 

In the present work we will see how a regression model of 

the house value estimated for the city of Birmingham can 

be adapted to the prediction of the houses values in San 

Jose. 

 
2.2.The CO

2
-GNP dataset 

 
The economic aspects of the diffusion of greenhouse 

gases and their impact on the environment play an 

important role on the economies of countries, and their 

analysis has attracted a strong interest in the last twenty 

years (Barker 1991, Grubb and Ha-Duong 1997). As 

pointed out by Hurn et al. (2003), the study of such data 

could be particularly useful for countries with low GNP in 

order to clarify which development path they are 

embarking into. 

 

The objectives of this study are to investigate the 

relationship between gross national product (GNP) and 

carbon dioxide gas (CO
2
) emissions to contribute to 

current debates about emission projections. This study 

also aims to determine typical economic policies of 

countries regarding the environment. To this end, the 

second dataset studied in the present paper contains the 

CO
2
 emissions per capita and the gross national product 

per capita for 111 countries in 1980 and 1999. The 

sources of the data are The official United Nations site for 

the Millennium Development Goals Indicators and the World 

Development Indicators of the World Bank. Figure 2 plots 

per capita for 111 countries, in 1980 (left) and 1999  
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Figure 2. Emissions of CO

2
 per capita versus GNP per capita in 1980 (left) and 1999 (right). In the left panel, circles indicate 

group 1 and triangles group 2. 

 

CO
2
 emissions per capita vs. the logarithm of GNP 

(right). The two groups of countries in the left panel of 

Figure 2 are discussed later in the paper. 

 

We will see in this paper how the use of the 1980 data 

can be helpful in the analysis of 1999 data, by improving 

the quality of the regression models used to explain the 

relationship between the gross national product and the 

CO
2
 emissions. Moreover, our analysis will shed light on 

the evolution of this relationship from 1980 to 1999, and 

will explain the economic political choices of particular 

countries. 

 

3. Adaptive regression models 

 
In this paper, the adaptive regression models proposed in 

Bouveyron and Jacques (2003 and 2010) will be used to 

analyze and understand the population evolution of the 

two datasets presented in the previous section. This 

section briefly reviews these adaptive regression models. 
 

3.1.  Adaptive linear models 

 

The general setting of regression analysis is to identify a 

relationship (the regression model) between a response 

variable and one or several explanatory variables. 

Adaptive linear models have been defined in order to 

adapt an existing regression model to a new situation in 

which the variables are identical, but with a possibly 

different probability density and a relationship between 

response and explanatory variables which could have 

changed. 

 
Linear models for regression In regression analysis, the 

data     nn yxyx ,,,,=S 11   which arise from a 

population P, are assumed to be independent and 

identically distributed samples from an unknown 

distribution, where  )()1( ,, pxxx     Rp and Y   R. 

In many regression situations, Y is considered as a 

stochastic variable and x  as a deterministic one. A 

general data modeling problem is to identify the 

relationship between the explanatory variable x  (or 

covariate) and the response variable Y (or dependent 

variable). Both standard parametric and non-parametric 

regression approaches start with the following model: 

 

    ,xfY ,                                                             (1) 

 

with  ~N  ²,0   and where   is a vector of real-valued 

regression parameters. 

 

The most common model is the linear form: 

 

  



d

i

ii xxf
1

0 )(,  , (2) 
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with  d ,,, 10    Rd+1 is a vector of 

regression parameters, and  
dii 1

  is a basis of 

regression functions. In particular, usual linear regression 

occurs when d=p and 
)()( i

i xx  . 

 
How to adapt a regression model to another 

population? Let us assume that the estimation of the 

regression function f has been obtained in a preliminary 

study by using the sample S, and that a new regression 

model must be adjusted to a new sample S*=

    ***
1

*
1 ,,,, nn yxyx  , measured on the same variables but 

arising from another population P* (n* is generally 

assumed to be small). The new regression model on P* 

can be written: 

 

Y| x *~N ²)),,(( ** xf  

 

with 

 

  



d

i

ii xxf
1

***
0

** )(,  . 

 

Let us now specify the focus of adaptive linear models by 

making the following assumptions. First, the variables (Y,

x ) and (Y*, x *) are assumed to be the same but 

measured on two different populations. Second, the size 

n* of the observation sample S*= *,1
** ),( niii xy   of 

population P* is assumed to be small compared to the 

number of observations from the reference population P. 

Otherwise, the mixture regression model could be 

estimated directly without using the training population. 

 

We consider the following transformation model between 

both regression functions for modeling the link between 

both populations: 

 

  )),((, **  xfxf                                                    (3) 

 

Since the transformation model (3) proposed in the 

previous section is a very general model, we have to make 

additional assumptions on it. We propose to assume that 

the transformation function   has the following form: 

 

),()),((  xfxf   

 

with   Rd+1. This transformation can be also written 

in terms of the regression parameters of both models as 

follows: 

iii  *
 di ,,1 ,                                                (4) 

with i   R. We note that the regression functions i  

are assumed to be the same for both regression models, 

which is natural since the variables are identical in both 

populations. 

 
A family of transformation models Since the number of 

parameters to estimate for the transformation (4) is equal 

to (d+1), learning this transformation model is 

equivalent to learning a new regression model from the 

sample S*. It is therefore necessary to reduce the number 

of free parameters and that can be done by imposing 

constraints on the transformation parameters i . A 

family of seven transformation models is then considered, 

thereafter referred to as Adaptive Linear Models, from 

the most complex model (hereafter M0) to the simplest 

one (hereafter M6): 

 

 Model M0: 00
*
0    and iii  *

 for 

i=1,…,d. This model is the most complex model of 

transformation between the two populations P and 

P*, and is equivalent to learning a new regression 

model from the sample S*. 

 

 Model M1: 0
*
0    and iii  *

 for i=1,...,d. 

This transformation model assumes that both 

regression models have the same intercept 0 . 

 

 Model M2: 00

*

0    and ii  *
 for i=1,...,d. 

This transformation model assumes that the 

intercept of the two regression models differ by the 

multiple scalar 0  and that all the other regression 

parameters differ by the same multiple scalar  . 

 

 Model M3: 0
*
0    and ii  *

 for i=1,...,d. 

This transformation model assumes that all the 

regression parameters of both regression models 

differ by the same multiple scalar  . 

 

 Model M4: 0
*
0    and ii  *

 for i=1,...,d. 

This transformation model assumes that both 

regression models have the same intercept 0  and 

all the other regression parameters differ by the same 

multiple scalar  . 

 

 Model M5: 00
*
0    and ii  *

 for i=1,…,d. 

This transformation model assumes that both 

regression models have the same parameters except 

the intercept. 
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Table 1. Complexity (number of parameters) of the 

transformation models. We recall that the models M0 and 

M6 correspond respectively to OLS on P* and OLS on P. 

Model M
0
 M

1
 M

2
 M

3
 M

4
 M

5
 M

6
 

Parameters 

numbers 

d+1 d 2 1 1 1 0 

 

 Model M6: 0
*
0    and ii  *

 for i=1, ...,d. 

This model assume that both populations P and P* 

have the same behavior. 

 
The numbers of parameters to estimate for these 

transformation models are presented in Table 1. Note 

that it is possible to consider intermediate models, by 

imposing specific constraints on some parameters i  for 

given i {1,…,d}. The practitioner could use domain 

knowledge to introduce some intermediate models which 

are useful for the application at hand. 

 

Estimation procedure and model selection The 

estimation procedure consists of two main steps 

corresponding to the estimation of the regression 

parameters on the population P and the estimation of the 

transformation parameters using samples of the 

population P*. The natural method for the first 

estimation step is to use the ordinary least squares (OLS) 

procedure which aims to minimize the error sum of 

squares. Once the regression parameters of population P 

have been learned, the parameters of the transformation 

models can also be estimated by minimizing least squares 

error using the OLS procedure. However, for the sake of 

brevity, the corresponding estimators are not presented in 

this paper. Finally, the cross validation PRESS criterion 

(Allen 2974) is used in order to select the most 

appropriate model for the data among the seven Adaptive 

Linear Models. 

 

3.2. Adaptive mixture models 

 
As an alternative to linear models for modeling complex 

systems, finite mixtures of regressions are a popular 

approach, introduced in Goldfeld and Quandt (1973) as 

switching regression models. In particular, these models 

are often used in Economics for modeling phenomena 

with different phases. They assume that the dependent 

variable Y   R can be linked to a covariate x =

    pxx ,,,1 1    Rp+1 by one of K possible regression 

models: 

 

K,…1,=k , kk
txY                                            (5) 

 

where ~N(0,1),  kpkk  ,,0    K ,,1   is the 

regression parameter vector in Rp+1 and 

 22
1

2 ,, Kk    is the residual variance. The 

conditional density distribution of Y given 
x

 is therefore: 

 

),()( 2

1

kk
t

K

k

k xyxyp 


 ,                                      (6) 

 

where the K ,,1   are the mixing proportions (with 

the classical constraint 



K

i

k

1

1 ), and ),.( 2
kk

tx   is 

the Gaussian density parameterized by its mean k
tx   

and variance 
2
k . In the same way as for adaptive linear 

models, the new population P* for which we want to 

predict Y is assumed to be different from the training 

population P. The mixture regression model for P* can be 

written as follows: 

 

*****  kk
txY   

 

 ),()( 2*******
kk

t
k xyxyp   (7) 

 

with 
* ~N(0,1), 

*
k   *

*
*
1 ,, K   and 

 *
*

*
1

* ,, Kk   . In the addition to the assumptions 

made in the previous section, since both populations have 

the same nature, each mixture is assumed to have the 

same number of components (K*=K). Under these 

assumptions, the goal is then to predict Y* for some new 

x * by using both samples S=( iy , x i)i=1,n and S*. 

 
A family of transformation models Following the strategy 

of the linear case, the following general transformation 

model is considered: 

 

kkk  *
,                                                                   (8) 

 

where ),,,( 10 kpkkk diag    

*
k  is free, 

where ),,,( 10 kpkkdiag    is the diagonal matrix 

containing ( kpkk  ,,, 10  ) on its diagonal completed 

by zeros. The family of parsimonious models is defined by 

imposing some constraints on k : 

 
 MM1 assumes that both populations are the same 

population: k =Id is the identity matrix, 
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 MM2 assumes that the link between populations is 

independent of the covariates and mixture 

components: 

 

 MM2a : 10 k , 10 k  and kk  *

pj 1 , 

 MM2b : dk I , 1kj  and kk  *
 

pj 1 , 

 MM2c : k Id and kk  *
, 

 MM2d : 00  k , 1 kj  and kk  1
*   

pj 1 , 

 
 MM3 assumes that the link between populations is 

independent of the covariates: 

 

 MM3a : 10 k , kkj    and kkk  *
 

pj 1 , 

 MM3b : kk  0 , 1kj  and kk  *
 

pj 1 , 

 MM3c : kk  Id and kkk  *
, 

 MM3d : 00 kk   , 1kkj    and kkk  1
*   

pj 1 , 

 

 MM4 assumes that the link between populations is 

independent of the mixture components: 

 

 MM4a : 10 k , jkj    pj 1 , 

 MM4b : k , 1kj  with   a diagonal 

matrix, 

 

 MM5 assumes that k is unconstrained, which 

leads to estimating the mixture regression model for 

P* by using only S*. 

 
Moreover, the mixing proportions are allowed to be the 

same in each population or to be different between both 

populations P and P*. In the latter case, they 

consequently have to be estimated using the sample S*. 

Corresponding notations for the models are respectively 

 

MM. and pMM.. Table 2 gives the number of parameters 

to estimate for each model. If the mixing proportions are 

different from P to P*, K-1 parameters to estimate must 

be added to these values. 

 

Estimation procedure and model selection As before, 

the estimation procedure consists of two steps. The first 

step consists in estimating model parameters for the 

Table 2. Number of parameters to estimate for each model 

of the proposed family. 

Model MM
1
 MM

2a-c
 MM

2d
 MM

3a-c
 

Param. 0 1 2 K 

Model MM
3d

 MM
4a

 MM
4b

 MM
5
 

Param. 2K p+K p+K+1 K(p+2) 

 

reference population P whereas the second one focuses 

on the estimation of the link parameters. The estimation 

of the mixture regression parameters 
*
k  is performed 

afterwards by plug-in. Conversely to the case of linear 

models, parameter estimation cannot be conducted with 

the standard OLS procedure and the estimation has to be 

carried out by maximum likelihood using a missing data 

approach via the EM algorithm (Dempster, Laird and 

Rubin 1977). Finally, in order to select among the 

transformation models previously defined the most 

appropriate model of transformation between the 

populations P and P*, we propose to use the PRESS 

criterion (Allen 1974) or the Bayesian Information 

Criterion (BIC, Schwarz 1978). 

 
4. Experimental results 
 
4.1 The housing market data 

 

Experimental setup A semi-log regression model for the 

Birmingham housing was learned using all 1541 available 

observations and the 7 adaptive linear models were then 

used to transfer the Birmingham regression model to the 

San Jose housing market. In order to evaluate the ability 

of the adaptive linear models to transfer the Birmingham 

knowledge to San Jose in different situations, the 

experiment protocol was applied for different sizes of San 

Jose samples ranging from 5 to 921 observations. For each 

dataset size, the San Jose samples were randomly selected 

among all available samples and the experiment was 

repeated 50 times for averaging the results. For each 

adaptive linear model, the PRESS criterion and the MSE 

were computed, by using the selected sample for PRESS 

and the whole San Jose dataset for MSE. 

 

Experimental results Figure 3 displays the logarithm of 

the MSE for the different adaptive linear models in terms 

of the size of the used San Jose samples. Similarly, Figure 

4 displays the logarithm of the PRESS criterion. First 

Figure 3 indicates that model M6, which corresponds to 

the Birmingham model, is actually not adapted for 

modeling the San Jose housing market since it does not 

yield a satisfactory MSE value. We notice that the curve 

corresponding to the MSE of the model M6 is constant 

since the regression model has been learned on the 

Birmingham data and consequently does not depend on 

the size of the San Jose's dataset selected for learning. 

Secondly, the model M0, which is equivalent to OLS on  
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Figure 3. MSE results for the Birmingham-San Jose data. 

 

 
Figure 4. PRESS criterion for the Birmingham-San Jose 

data. 

 

the San Jose samples, is particularly disappointing (large 

values of MSE) if it is learned with a very small number of 

observations and becomes more efficient for learning 

datasets larger than 50 observations. The model M1 has a 

similar behaviour for small learning datasets but turns out 

to be less interesting than M0 when the size of the 

learning dataset is larger. These behaviours are not 

surprising since both models M0 and M1 are very 

complex models and then need large datasets to be 

correctly learned. Conversely, the models M2 to M5 

appear not to be sensitive to the size of the dataset used 

for adapting the Birmingham model. 

 

In particular, model M2 obtains very low MSE values for 

a learning dataset size as low as 20 observations. This 

indicates that model M2 is able to adapt the Birmingham 

model to San Jose with only 20 observations. Moreover 

Table 3 indicates that model M2 provides better 

prediction results than model M0 for the San Jose 

housing market for learning dataset sizes less than 100 

observations. Naturally, since model M0 is more complex,  

Table 3. MSE results for the Birmingham-San Jose data. 

Model 10 obs. 25 obs. 50 obs. 

Model M
0
 3.5x10

7
 576.9 386.1 

Model M
2
 414.8 356.7 342.1 

Model M
6
 1528.9 1528.9 1528.9 

Model 100 obs. 250 obs. all obs. 

Model M
0
 336.8 310.7 297.5 

Model M
2
 336.0 332.5 330.1 

Model M
6
 1528.9 1528.9 1528.9 

 

it becomes more efficient than model M2 for larger 

datasets even though the difference is not so big for large 

learning datasets.  Figure 4 shows that the PRESS

criterion, which will be used in practice since it is 

computed without a validation dataset, allows the 

practitioner to successfully select the most appropriate 

transfer model. Indeed, it appears clearly that the PRESS 

curves are very similar to the MSE curves computed on 

the whole dataset. Finally, in such a context, the 

transformation parameters obtained by the different 

adaptive linear models can be interpreted in an economic 

way and this could be interesting for economists. In 

particular, the estimated transformation parameters by 

the model M2 with the whole San Jose dataset are 0

=1.439 and  =0.447. The fact that the San Jose's 

intercept is almost 50% larger than the one of 

Birmingham suggests that the minimal basis price of an 

housing is more expensive in San Jose than in 

Birmingham. However, the fact that the regression 

coefficients associated to the explanatory variables of San 

Jose are on average 50% smaller than the one of 

Birmingham could mean that the growing of the price 

according to the housing features is more moderated. 

 

To summarize, this experiment has shown that the 

adaptive linear models are able to transfer the knowledge 

on the housing market of a reference city to the market of 

a different city with a small number of observations. 

Furthermore, the interpretation of the estimated 

transformation parameters could help the practitioner to 

analyze in an economic way the differences between the 

studied populations. 

 
4.2 The CO

2
-GNP data 

 

A mixture of second order polynomial regressions seems 

to be particularly well adapted to fit the link between 

CO
2
 emissions and the log-GNP, and will be used in the 

sequel. For the 1980 data, two groups of countries are 

easily distinguishable: a first minority group (group1, 

about 25% of the whole sample) is made up of countries 

for which a growth in the GNP is linked to a high growth 

in CO
2
 emissions, whereas the second group (group 2, 

about 75%) seems to have more environmentally friendly 

policies. This country discrimination into two groups is 

more difficult to obtain on the 1999 data: it seems that 
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countries which had high CO
2
 emissions in 1980 have 

adopted a more environmentally friendly development 

than in the past, and a two-component mixture 

regression model could be more difficult to exhibit. 

 

In order to address this issue, adaptive mixture models 

are used to estimate the mixture regression model on the 

1999's data. The eight models pMM2a to pMM3d (since 

pMM4a and pMM4b are equivalent to pMM2a and 

pMM2c for p=1), a classical mixture of second order 

polynomial regressions with two components (MR) and a 

usual second order polynomial regression (UR) are 

considered. Different sample sizes of the 1999 data are 

tested: 30%, 50%, 70% and 100% of the S* size 

(n*=111). The experiments are repeated 20 times in 

order to average the results. Table 4 summarizes these 

results: MSE corresponds to the mean square error, 

whereas PRESS and BIC are the model selection criteria 

introduced in Section 3. In this application, the total 

number of available data in the 1999 population is not 

sufficiently large to separate them into two training and 

test samples. For this reason, MSE is computed on the 

whole S* sample, although a part of it has been used for 

the training (from 30% for the first experiment to 100% 

for the last one). Consequently, MSE is a significant 

indicator of predictive ability of the model when 30% and 

50% of the whole dataset are used as training set since 70%

 and 50% of the samples used to compute the MSE 

remain independent from the training stage. However, 

MSE is a less significant indicator of predictive ability for 

the two last experiments and the PRESS should be 

preferred in these situations as indicator of predictive 

ability. 

 

Table 4 first reveals that the 1999 data are actually made 

of two components as in the 1980 data since both PRESS 

and MSE are better for MR (2 components) than for UR 

(1 component) for all sizes n* of S*. This first result 

validates the assumption that both the reference 

population P and the new population P* have the same 

number K=2 of components, and consequently the use of 

adaptive mixture of regression makes sense for this data. 

Second, adaptive mixture models turns out to provide 

very satisfying predictions for all values of n* and in 

particular outperform the other approaches when n* is 

small. Indeed, BIC, PRESS and MSE all testify that these 

models provide better predictions than the other studied 

methods when n* is equal to 30%, 50% and 70% of the 

whole sample. Furthermore, it should be noticed that 

adaptive mixture models provide stable results with 

respect to variations on n*. In particular, the models 

pMM2 are those which appear to be the most efficient on 

this dataset and this means that the link between both 

populations P and P* is mixture component independent. 

This application is a good illustration of the advantage of 

Table 4. MSE on the whole 1999 sample, PRESS and the 

BIC criterion for the 8 adaptive mixture models (pMM
2a

 to 

pMM
3d

), the usual regression model (UR) and the classical 

regression mixture model (MR), for 4 sizes of the 1999 

sample: 33, 55, 77 and 111 (whole sample). Lower BIC, 

PRESS and MSE values for each sample size are in bold 

typeface. 

30% of the 1999 data (n*=33)  50% of the 1999 data (n*=55) 

model BIC PRESS MSE  model BIC PRESS MSE 

pMM
2a

 13.21 4.01 4.77  pMM
2a

 14.10 4.76 3.88 

pMM
2b

 12.89 4.57 3.66  pMM
2b

 13.99 4.10 3.77 

pMM
2c

 12.57 4.16 4.55  pMM
2c

 14.07 5.29 4.22 

pMM
2d

 17.13 4.38 4.77  pMM
2d

 17.82 4.45 4.66 

pMM
3a

 15.92 4.49 4.66  pMM
3a

 18.07 4.27 4.66 

pMM
3b

 16.01 5.59 4.11  pMM
3b

 18.00 5.62 4.44 

pMM
3c

 15.75 6.17 4.23  pMM
3c

 17.60 5.62 4.33 

pMM
3d

 22.72 4.49 4.66  pMM
3d

 26.61 6.12 4.55 

UR 27.08 7.46 7.66  UR 20.87 7.95 7.21 

MR 32.89 5.54 5.11  MR 39.69 4.82 4.77 

         

70% of the 1999 data (n*=77)  (n*=111) 

model BIC PRESS MSE  model BIC PRESS MSE 

pMM
2a

 15.15 5.51 8.21  pMM
2a

 15.51 3.83 3.77 

pMM
2b

 14.82 3.89 3.77  pMM
2b

 15.54 3.87 4.77 

pMM
2c

 14.71 4.53 4.44  pMM
2c

 15.34 4.13 4.11 

pMM
2d

 19.00 5.83 4.99  pMM
2d

 20.14 4.41 4.33 

pMM
3a

 18.96 4.79 4.44  pMM
3a

 20.19 4.48 4.77 

pMM
3b

 19.06 4.34 4.22  pMM
3b

 20.03 4.41 4.33 

pMM
3c

 18.98 5.26 3.77  pMM
3c

 20.06 4.35 3.44 

pMM
3d

 27.57 5.55 4.88  pMM
3d

 29.55 4.76 5.44 

UR 22.08 8.00 7.10  UR 23.62 7.53 6.99 

MR 43.91 5.06 3.33  MR 47.19 3.66 2.89 
 

 

combining information on both past (1980) and present 

(1999) situations in order to analyze the link between 

CO
2
 emissions and gross national product for several 

countries in 1999, especially when the number of 

observations for the present situation is not sufficiently 

large. Moreover, the competition between the adaptive 

mixture models is also informative. It seems that three 

models are particularly well adapted to model the link 

between the 1980 data and the 1999 data: pMM2a, 

pMM2b and pMM2c. The particularity of these models is 

that they consider the same transformation for both 

classes of countries, which means that all the countries 

have the same kind of evolution. 

 

The estimated mixture of two regression models on the 

1980 data is: 

 

CO
2
 =26.96-9.62log(GNP)+ 0.88log(GNP)2 

CO
2
 =13.42-4.57log(GNP)+0.40log(GNP)2 

 

with respective probabilities 1 0.26 and 2 0.74 and 

residual variances 2
1 3.10 and 2

2 0.55. The model 
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Figure 5. Emissions of CO

2
 per capita versus GNP per capita in 1980 (left) and 1999 (right) and estimated adaptive mixture 

models (with model pMM
2c

 for 1999). 

 

for the 1999 data estimated with model pMM2c (for the 

whole sample size) is obtained with a link parameter 
1.26: 

 

CO
2
 =33.92-12.1log(GNP)+1.11log(GNP)2 

CO
2
 =16.89-5.75log(GNP)+ 0.50log(GNP)2 

 

with 1 0.15, 2*
1 4.9, 2 0.85 and 2*

2 0.87. 

These results are illustrated in Figure 5. 

 
5. Discussion 
 

When carrying out a regression analysis to analyze a 

phenomenon which has already been studied but in 

different conditions, adaptive models can help exploit the  

 

previous analysis in order to emphasize the quality of the 

current one. In this paper, we have shown how a 

regression model predicting the house values can be 

adapted from the US South to the US West Coast, and 

how the regression of CO
2
 emissions in terms of gross 

national product in 1999 can be estimated by using 

information about the same analysis in 1980. 

Similar models exist also in the context of classification 

tasks (Biernacki et al. 2002, Jacques and Biernacki 2010). 
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